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Preface 

We publish in this volume the plenary talks and a selection of the papers on 
numerics, optimization and their applications, presented at the 22nd Conference 
on System Modeling and Optimization, held at the Politecnico di Torino in July 
2005. The conference has been organized by the Mathematical Department of 
the Politecnico di Torino. 

IFIP is a multinational federation of professional and technical organiza- 
tions concerned with information processes. It was established in 1959 under 
the auspices of UNESCO. IFIP still mantains friendly connections with spe- 
cialized agencies of the UN systems. It consists of Technical Committees. The 
Seventh Technical Committee, established in 1972, was created in 1968 by 
A.V. Balakrishnan, J.L. Lions and G.I. Marchuk with a joint conference held 
in Sanremo and Novosibirsk. 

The present edition of the conference is dedicated to Camillo Possio, lulled 
by a bomb during the last air raid over Torino, in the sixtieth anniversary of 
his death. The special session "On the Possio equation and its special role in 
aeroelasticity" was devoted to his achievements. The special session "Shape 
Analysis and optimization" commemorates the 100th anniversary of Pompeiu 
thesis. 

All the fields of interest for the seventh Technical Committee of the IFTP, 
chaired by Prof. I. Lasiecka, had been represented at the conference: Opti- 
mization; Optimization with PDE constraints; structural systems optimization; 
algorithms for linear and nonlinear programming; stochastic optimization; con- 
trol and game theory; combinatorial and discrete optimization. identification 
and inverse problems; fault detection; shape identification. complex systems; 
stability and sensitivity analysis; neural networks; fractal and chaos; reliability. 
computational techniques in distributed systems and in information processing 
environments; transmission of information in complex systems; data base de- 
sign. Applications of optimization techniques and of computational methods 
to scientific and technological areas (such as medicine, biology, economics, 
finances, aerospace and aeronautics etc.). 

Over 300 researchers took part to the conference, whose organization was 
possible thanks to the help and support of the Department of Mathematics of the 
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Politecnico di Torino. We would like to thank Istituto Boella, Fondazione Cassa 
di Risparrnio Torino, Unicredit Banca and the Regione Piemonte for financial 
support. We also acknowledge support from Politecnico di Torino and INRIA. 

We would like to thank the following colleagues, who organized special and 
invited sessions, greatly contributing to the success of the conference: 

V. Agoshkov, 0 .  Alvarez, G. Avalos, A. Bagchi, U. Boscain, A.V. Balakrish- 
nan, M. Bardi, F. Bucci, J. Cagnol, P. Cardaliaguet, P. Cannarsa , M.C. Delfour, 
D. Dentcheva, A. Dontchev, H. Furuta, K. Juszczyszyn, P. Kall, A. Kalliauer, 
R. Katarzyniak, D. Klatte, B. Kurnrner, M. A. Lbpez, V. Maksimov, K. Marti, 
J. Mayer, S. Migorsh, Z. Naniewicz , N.T. Nguyen, J. Outrata, B. Piccoli, 
S. Pickenhain, M. Polis, E. Priola, A. Ruszczynski, I.F. Sivergina, H. Scolnik, 
J. Sobech, J. Sokolowski, G. Tessitore, D. Tiba, F. Troeltzsch , S. Vessella, 
J. Zabczyk, T. Zolezzi, J.P. Zolesio. 
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THE LEGACY OF CAMILLO POSSIO TO 
UNSTEADY AERODYNAMICS 

R. VOSS,' 
' D L R  Institute ofAeroelasticity, Goettingen, rdph.voss@dlr.de * 

Abstract First a brief overview is given of Camillo Possio's short but outstanding and 
fruitful career. This is followed by an outline of the state of the art in flutter and 
unsteady aerodynamic research, and the challenges and problems like high-speed 
flight that arose in aircraft development at that time. Possio's first publications 
on gas dynamic and supersonic problems are reviewed. The main focus is on the 
1938 report on unsteady subsonic compressible 2D flow that became famous and 
was named after him, because he was the first person to developed an unsteady 
compressible aerodynamic theory, which was urgently needed in those years. 
The theory, which is based on Prandtl's acceleration potential is briefly outlined. 
Some discussions and comments that took place in Germany and other countries 
at that time highlight the importance of this work for the scientific community. 
Early solutions of Possio's integral equation developed by himself and later ones 
developed by other researchers are presented, as well as approaches that extended 
the theory to 3 dimensional flows before the war, like Kuessner's theory, which 
was probably influenced by Possio. Finally Carnillo Possio's later scientific 
contributions to wind tunnel interference and to hydrodynamics are described. A 
summary of some developments of the 2nd half of the 20th century demonstrate 
that Camillo Possio created a milestone for modern aircraft research during his 
very short career. 

keywords: Aeroelasticity, Unsteady Aerodynamics, Flutter, Integral Equa- 
tion, Possio. 

1. Introduction 
Camillo Possio was born on October 30. 1913 and died on April 5. 1945. 

He was killed by a bomb during the last air-raid over Turin. He received the 
Laureate Degree in Industrial Engineering and in Aeronautics, both in Turin 
in 1936 and 1937. He was a pupil of Modesto Panetti and Carlo Ferrari. He 
was Assistant Professor and then Professor at Politecnico di Torino. His work 
is well known in the world's aeronautic community, particularly his method 

'The author would like to thank Prof. H. Foersching for many fruitful d~scussions 
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Furuta H.. Marti K., Pandolfi L., (Boston: Springer). pp. [insert page numbers]. 



of calculating the unsteady airloads of harmonically oscillating wings in 2D 
compressible flow, the key equation of which has been named after him. But 
his fruitful scientific carreer also covers general problems of gas dynamics and 
supersonic flow, 3D wing oscillations in incompressible flow, the influence of 
free surfaces on hydrodynamics, as well as the influence of wind tunnel walls 
on measurements. His work was published in about 16 papers, many of which 
were translated from Italian to German and English. When he died at the age 
of 31, he was one of the most promising experts of aerodynamics in Italy. He 
possessed the special skill of using high-level mathematics to obtain results of 
practical interest. 

2. Aeroelastic and high-speed flight challenges 
During the fast development of aircraft at the beginning of the last century, the 

significance of aeroelastic effects soon increased. These phenomena resulted 
from the interaction of the elastic structural system with a surrounding airflow. 
Airplanes have to be built extremely lightly and their structure is flexible. Elas- 
ticity of an aircraft increases with size more than proportional. Fig. ldepicts 
the wing deformations of modern aircraft wings in flight. 

Fig~lre 1. Deformation of a transport aircraft wing (1) and of a sailplane (r) 

As long as strength requirements are fulfilled, structural flexibility itself is not 
necessarily objectionable. But the static and dynamic deformations of lifting 
surfaces generate steady and unsteady aerodynamic reactions, that in turn alter 
the deformations. These interactions may lead to several different aeroelas- 
tic problems with far-reaching technical consequences for flight. Of s~ecial  
importance is the flutter stability of wings and control surfaces. Particularly 
during the First World War pilots often reported of heavy oscillations of the 
wings and tail planes, that resulted in many fatal accidents. Back then aircraft 
were usually biplanes and the most frequent aeroelastic problems did occur not 
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on the wings but with tail flutter. One of the first documented cases was the tail 
flutter problem of the British Handley-Page 01400 bomber. Biplane construc- 
tions had a high torsional wing stiffness due to the interplane bracing. This 
was lost when cantilever monoplanes were developed, and flutter became even 
more dangerous. A remarkable example is the destruction of a big Ju90 air- 
craft in 1938 by bending-torsional tail-plane flutter. Although these accidents 
were not recognized to be a stability problem at that time, it seemed clear from 
the beginning that a theoretical investigation of these destructive vibrations re- 
quired knowledge of both the elastic oscillatory behaviour of the lifting surfaces 
and the oscillatory motion-induced unsteady airloads. This presented a great 
scientific challenge. A systematic investigation of wing flutter and unsteady 
aerodynamics began about 1920 in Goettingen, Germany and in Turin, Italy. In 
general three different forces interact and generate aeroelastic effects, namely 
elastic forces E, aerodynamic forces A and inertial or mass forces I. They are 
distributed continuously over an aircraft and are in equilibrium : 

Q denotes a known external force, which is independent from the aeroelastic 
system, rising for example from: atmospheric turbulence, gusts, landing gear 
impacts. E, A, I are functions of the elastic geometrical deformations q. If 
Q = 0, the equation describes the general aeroelastic stability problem. The 
analytical solution of this problem thus requires the calculation of the involved 
system forces as a function of local elastic deformations for a complete aircraft 
or for its components and the solution of the equilibrium equation. 

The governing equations of fluid dynamics, the Navies-Stokes equations, 
have been known since the 19th century. But with the exception of a few lim- 
iting special cases there was no chance of finding analytical solutions. Only 
the development of numerical CFD (Computational Fluid Dynamics) methods 
since 1970 opened the way to computing particularly compressible and viscous 
flow problems around complex 3D configurations. When powered flight began, 
mainly experimental observations were used together with simplifications of the 
basic equations in order to derive mathematical models of the flow around an 
aircraft. In 1918 L. Prandtl developed his idea of a lifting line to represent the 
effect of a lift generating wing. Since the mathematical value of the circulation 
is directly related to the lift, the wing is replaced by a vortex line along the 
span at 114 chord of the wing, with constant strength r. Flow visualisations 
first in water tunnels for 2D wing sections for a starting motion showed the 
presence of a bound vortex and of a free starting vortex of opposite sign, which 
is swept down from the trailing edge to infinity by the main flow. These two 
vortices compensate, thus fulfilling the vorticity conservation law. If the fluid 
is incompressible and free of rotation - except for the bound and free vortices - 



a potential function exists for the velocity vector and fulfills the Laplace equa- 
tion. This follows from mass conservation, while a relation between pressure 
and velocity follows directly from momentum equation : 

8 P rotv'=O--t G = V @  and -+V(pv') = O  p = c o n s t - - + V v ' = A $ = O  
at 

(2) 
In 1922 Prandtl extended his concept to a theory of unsteady oscillating 2D 
lifting surfaces. Every time the bound vortex strength y - and thus the lift - 
changes, a small free vortex with the opposite strength c of this change is created 
to fulfill the vorticity conservation law, and is carried downstream from the 
trailing edge by the main flow. This model of unsteady free and bound vortices 
was applied by Prandtl's student W. Birnbaum, who developed a mathematical 
singularity method for computing unsteady airloads induced by an oscillating 
2D wing [17]. He showed that aerodynamic lift and moment on the oscillating 
surface lag behind the forcing motion, and that this phase shift as well as the 
magnitude of unsteady lift and moment strongly depend on a new similarity 
parameter, the reduced frequency, see fig. 2. 

Figure 2. Vortex generation in the wake of an oscillating airfoil 

He further remarked that modeling the unsteady problem requires a chordwise 
vorticity distribution instead of one bound vortex. His work was key to under- 
standing the physical mechanism of flutter as a dynamic aeroelastic stability 
problem. This could be solved by assuming all forces including the unsteady 
aerodynamics to be harmonic and then treating eq.(l) as a complex Eigenvalue 
problem. Birnbaum died in 1925 at the age of only 28. 
Structural dynamic modeling was either provided by a simplified elastic beam 
theory or from experimental ground vibration tests. These soon reached a high 
standard. In contrast the prediction of unsteady airloads remained a key prob- 
lem, due to the mathematical complexity. Measurements of unsteady motion- 
induced aerodynamics did not exist before 1938, and therefore the flutter test, 
either in a windtunnel or in flight, provided the only -indirect - validation of 
unsteady aerodynamic models. 
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Birnbaum's theory was later expanded by Kuessner and Schwarz in Germany 
to include also control surface oscillations. Derivations of other solutions for 
the same problem were performed in Italy by Possio's colleague Cicala and in 
the US by Theodorsen, adopting mathematical singularity models or conformal 
mapping. As their results agreed, the development of unsteady incompressible 
2D flow around airfoils was completed about 1930. The efforts that followed 
focussed on 3D and compressible flow. 

When flight speeds increased, new problems were encountered, especially 
when sonic speeds were approached. A significant amount of flight stability 
was lost, control surfaces lost their efficiency or even reversed their effect and 
wings and rudders started heavy vibrations. The only chance to understand these 
phenomena was to investigate the influence of the compressibility on unsteady 
flows. The special complexity of compressible flow was already known at the 
beginning of the last century. If flow velocity v was no longer much smaller 
than the speed of sound a, the speed of disturbance propagation in the fluid 
began to play an essential role, and the governing velocity potential equation 
for unsteady flow became a wave equation, see f i g  3 

Figure 3. Disturbance wavefronts in a compressible flow (I )  and spatial waviness of the 
velocity potential value (r) 

The priciples of compressible flow, including supersonic flows and shock waves, 
had already been elaborated around 1900 as gasdynamic theories. The only 
practical application of this knowledge was in the design and analysis of steam 
turbines and in the research of ballistic projectiles. Propeller blade tips had 
already reached these velocities and after 1930 several airplanes reached veloc- 
ities higher than 600 krnh, among them the German Messerschmidt 109 and 



the first jet airplane He178VI and the Italian waterplane MC72. For practical 
aircraft applications Prandtl and Glauert derived that lift and pressure on wings 
in compressible flow depend on Mach number by the factor 0 = dm. 
Mach number h!Ia = vla denotes the ratio between flight velocity and isen- 
tropic speed of sound. A major milestone on the path of compressible flow 
research was the 5th Volta Congress of the Royal Italian Academy of Sciences 
in 1935 in Rome. This conference with the topic of "High Velocities in Avia- 
tion" had been initiated by Arturo Crocco, a general and aeronautical engineer. 
The most famous aeronautical scientists of that time were invited to present 
state of the art in high-speed flow research. Several topics adressed at this con- 
ference soon influenced the work of young scientists like Carnillo Possio in the 
following years. 

3. First publications until 1937 

In [I]  and [2] Carnillo Possio investigated supersonic flow problems. The 
choice of this topic was certainly influenced by the Volta Congress. In super- 
sonic flow about bodies of revolution, like ballistic projectiles, often a curved 
shock wave occurs, which abruptly decelerates the flow from supersonic to 
subsonic and produces a strong drag on the body. Behind non-curved shocks 
the flow around a prescribed sharp nosed geometry could already be calculated 
by the method of characteristics. For the case of a body with blunt nose and 
a curved shock the flow becomes nonisentropic and rotational downstream of 
the shock. This law was named after L. Crocco, the son of A. Crocco. The 
method of characteristics is no longer valid, but L. Crocco outlined a method 
to overcome this dilemma at the Volta Congress, and he demonstrated that a 
mathematical solution could be obtained by a method presented by C. Ferrari, 
one of Possio's teachers. Camillo Possio expanded Crocco's work by deriving 
a concept for general 3D flows, like inclined bodies of revolution or wings. 

Possio's key paper [2] on unsteady supersonic flow about airfoils remained 
unknown in the international scientific community for several years. This might 
be due to the fact that it was published in the "Pontificia Accadernia Scientiarium 
Acta", and that its summary was written in Latin. Possio started his theory 
by deriving the velocity potential of an acoustic source of pulsating strength 
that moves rectilinear with supersonic velocity. This method was later also 
adopted by Kuessner for his General Lifting Surface Theory. Possio derived 
the induced velocity component normal to the airfoil which was represented 
by a flat plate. He combined the effects of two different sources, with an 
infinitesimal small distance to the upper and lower side of the thin plate, and 
thus obtained the effect of a doublet singularity with pulsating strength. The 
whole unsteady 2D supersonic flow was then modeled by a doublet distribution 
along the chord of the plate, and the doublet strength distribution was calculated 
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from the normal velocity which in turn was forced by the airfoil oscillation, the 
so-called downwash w. 

4. Possio's integral equation 
In 1938 24-year old Camillo Possio outlined the very first theory for unsteady 

compressible flow around 2D oscillating airfoils [3]. This was a complicated 
problem, because for the unsteady compressible wave equation the use of vor- 
tices as elementary solutions was not possible and the Prandtl-Glauert rule did 
not hold for unsteady flow. The wave equation for the velocity potential is de- 
rived from mass- and momentum conservation, and by linearly superimposing 
steady and unsteady flow velocity components v' = u, + V p  --+ q5 = p+ u,x 
the following form is obtained : 

d 2 p  d 2 p  Ma2 d 2 p  Ma2 d 2 p  (1 - M a  )- + - - 2-- - -- = 0 
ax2 dy2 v dxdt  v2 dt2 (3) 

As for isentropic flow the density is a function of pressure only, the acceleration 
vector has a potential $ too, which is a function of pressure only and thus has no 
discontinuity in the flow except at compression shocks and at the lifting surface, 
but not in the wake. Prandtl had presented the concept of the acceleration 
potential at the Volta Congress: 

Adopting a Galilei-Transformation x = 3 - v t ,  y = g, t  = f Possio derived 
a corresponding wave equation and fundamental solution $ I ~ ( X ,  y) in form of 
a doublet singularity of strength A(( ,  q ) .  

(6) 
The reduced frequncy is defined by w* = wblv and b = 112 is half chord. If 
the oscillating flat plate is modeled by doublet distribution of varying strength 
along the chord, the total acceleration potential is computed by an integral with 
a singularity at (x, y) = (c ,  7 ) .  Evaluation of Cauchy's mean value, yields 
a relation between doublet strength and pressure jump across the plate, and 
the doublet strength can be calculated from the boundary condition, which 
prescribes the disturbance velocity w in y-direction induced by the airfoil os- 
cillation. Performing differentiation and the limiting process y + 0 and q  i 0 



finally yields Possio's equation 

1 = - j e i ~ ~ =  I x - E l  z 
4P 

[iMa----- H I  (E) - H: (=)I) 
x - E  

x-E 
iw* + e - i n / l a Z  

48 

The kernel K depends on Mach number and reduced frequency and contains 
cylindrical Hankel functions. As Possio did not find an analytical expression 
for the kernel, he numerically calculated tables of K for Ma = 0, 0.25, 0.50, 
0.75 and for a limited range of values E = w * / x  - <l&fa/(P2b). Using these 
values he solved the integral equation by a series expansion for the unknown 
pressure jump bp according to Birnbaum and Ackermann 

8 " 
dp(8) = An cot - + C An sinn8 cos 8 = [ / I  

2 (9) 
n=l  

Possio applied only 3 terms of this series and correspondingly solved his integral 
equations by fulfilling it for w at 3 chorwise positions. This approximation was 
sufficient for rigid heave and pitch motions, and the unsteady components of 
lift and moment coefficients read 

These results are valid for sinusoidal oscillations and depend linearly on the 
oscillation amplitude and on its time derivative around the mean position. Possio 
presented his results in a form that was common in Italy and the UK, see fig. 4. 
The paper was translated in Germany in 1939, and the diagrams were trans- 
ferred to the German standard definition of coefficients, which differed from 
Possio's. This work supported engineers in Germany with unsteady compress- 
ible airloads in a form directly applicable for flutter computations. For more 
complex oscillation modes, like trailing edge flaps, which encounter a discon- 
tinuous behaviour at the hinge axis, more terms would have to be calculated. 
In 1942 Dietze suggested an iterative scheme that is based on the development 
of the kernel function in terms of its simpler incompressible counterpart, which 
had been presented by Possio in his paper too. 
The outstanding character of Possio's key paper was mentioned soon by Kuess- 
ner [I81 in 1940 : "The oscillating wing for 0 5 M a  5 1 has been investigated 



The Legacy of Camillo Possio 9 

Figure 4. Results from Possio's original paper 

up to now in just a single investigation for the two dimensional problem" and 
in 1981 by Garrick and Reed [23]: "There followed shortly afterward two short 
outstanding contributions by Camillo Possio in Italy. In 1938 he applied the ac- 
celeration potential to the two-dimensional nonstationary problem and arrived 
at an integral equation (Possio equation)". 

5. Further unsteady aerodynamic contributions 

With increasing flight speed v, the aerodynamic loads acting on an aircraft 
structure increase like v2. Thus high elastic bending moments appeared for 
wings with large aspect ratio (ratio of wing span to chord). The need to inves- 
tigate wings with low ratios was also driven by the requirements of more agile 
military aircraft and by the role of tail planes in flutter. As a result the effects of 
the wing tips became important and unsteady 3D theories had to be developed. 
In 3D flow the bound vortex line on the wing, together with the free vortices 
behind the tip and the starting vortex far downstream form a closed vortex line. 
For 3D unsteady flows around an oscillating wing the 2D unsteady model of 
Birnbaum and the 3D steady model of Prandtl were refined by Sears, see fig. 5 

Figure 5. Lines of constant vorticity in the wake of a 3D oscillating wing 



Vortex rings change periodically in strength and sign and leave the trailing 
edge of the oscillating wing, which forms the unsteady wake. The figure reflects 
that spanwise vorticity strength varies, thus producing a system of free vortex 
lines. Calculation of the interaction between the system of free vortices and 
bound vortices was too difficult whereas the simple model of just one single 
bound vortex was too coarse. Different authors - v.Borbely in Germany, Sears 
in the UK, Jones in the USA, and Cicala and Possio [8,9,11,12] in Italy - 
developed different methods to approximate the varying vortex strengths for 
both bounded and free vortices. In 1943 Kattenbach in Germany performed 
a comparison of the different theories for a 3D wing of elliptical planform in 
heavy oscillations with different reduced frequencies in incompressible flow. 
Remarkably he spent much more effort in reviewing Possio's theory in his paper 
than the other ones. After the war unsteady incompressible 3D problems were 
solved as a special case of Kuessners General Lifting Surface Theory, as soon 
as computers became available. 

Several high-speed wind tunnels, several of them in Germany and in Guidonia 
near Rome, as well as both flutter and unsteady aerodynamic tests in high speed 
flow were planned in the 1930s, but tests were not realized before the end of 
the war. One of the problems with test results is that the model is tested in an 
airstream, which is bounded either by the free atmosphere or by the walls of the 
test section. Camillo Possio was among the first ones to investigate the influence 
of tunnel walls on oscillating models [15]. He first demonstated, that tunnel wall 
disturbances decreased with frequency like l l w .  Then he calculated the effects 
of the above mentioned closed walls and free jet conditions. He found that 
esp. the imaginary part of unsteady lift coefficient was significantly changed 
by the wall effects. In [6], [7] and [8] Possio investigated the problem of general 
unsteady motions in 2D and 3D flows, namely non-harmonic impulsively started 
motions. 

6. Influence on the development of 3D theories 
In Germany H.G Kuesnner in 1940 published his General Lifting Surface 

Theory, which was the first German paper dealing with unsteady compresssible 
flow. The strategy he chose for derivation of his theory, use of a Lorentz 
Transformation to derive a wave equation for the velocity potential of a moving 
source, was the same that Possio had used two years earlier. Kuessner was 
very familiar with Italian work on aerodynamics and aeroelasticity, because he 
reviewed several translated papers, including 10 by Possio. Kuessner derived 
an integral equation relating the unknown load distribution on a lifting surface 
6p(< ,  q )  and the prescribed downwash velocity amplitude w ( x ,  y, z )  normal to 
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the surface, by means of a new Kernel function K. 

1) 
The theory is valid for lifting thin surfaces of an arbitrary planform in inviscid 
and irrotational flow, but not in transonic flow. Kuessner demonstrated that 
all other known theories of that time were special cases of this theory, but the 
Kernel was left in the form of a highly singular integral, whose solution could 
only be found for special cases like Possio's 2D theory. Since no analytical 
solution was found before the war, Possio's theory of 2D strips along the span 
of wings and tail planes was applied for the flutter analysis in high-speed flight. 

7. Work in non-aerodynamic fields 
The topic of lateral firing from an airplane was probably chosen in 1939 due 

to Camillo Possio's military service. The spinning axis and path of a projectile 
fired from board of an aircraft in a direction different from the aircraft's flight 
direction are not parallel. This yields an effective aerodynamic incidence angle, 
and therefore aerodynamic side forces. Possio calculated the airloads and the 
projectile motion and showed that due to the spinning forces the axis of the 
projectile soon turns to the direction of the path [lo]. In 1941 Possio focused 
on hydrodynamic problems. He investigated the influence of the free water 
surface on moving underwater airfoils [13], [14]. He calculated forces on a 
2D hydrofoil, the motion of which is governed by the Laplace equation for the 
velocity potential. The effect of the free water surface is assumed to be a linear 
perturbation. Possio used the constraints, that disturbance velocity vanishes at 
infinity and that pressure on the water surface has a constant value. Modeling 
both the hydrofoil and the disturbance velocity by a vortex distributions Possio 
derived the result that lift and drag on the hydrofoil depend on the Froude 
number Fr = v / a  and on the depth in which the hydrofoil of chord length 
1 moves with velocity v, g denotes the gravitational constant. 

8. Extension of Possio's method after the war 
Before the war 2D compressible unsteady flow based on Possio's integral 

equation was the best method available to model unsteady airloads in flutter 
calculations. 3D unsteady methods existed only for incompressible flow, and it 
was not before the 1960s that 3D unsteady compressible flow could be calcu- 
lated by solving Kuessners equation. The Doublet Lattice Method (DLM)[19] 
became the standard method for the years that followed. Similar to Possio's 2D 
theory, the flow is modeled by a doublet distribution on the lifting surfaces. The 
unknown doublet strength is discretized on trapezoidal panels. This powerful 



12 IFIP-TC7 2005 

method vields large linear svstems of eauations and fully populated matrices 

Figure 6. Discretization of an aircraft in DLM (1) and in TDLM (r) 

A transonic extension, the so-called TDLM (Transonic Doublet Lattice Method) 
has been developed later on [20]. In this method the unsteady transonic flow 
is modeled as a perturbation of a mean transonic steady flow and is governed 
by a nonhomogeneous wave equation for the acceleration potential. In contrast 
to purely subsonic flow additional source singularities have to be distributed in 
the flow field, the strength of which depends on the velocity potential of the 
transonic steady flow. Thus the DLM model of doublet panels is extended by 
volume elements of constant source strength, see fig. 6. 

Flutter became a problem in turbomachines when attempts to increase efficiency 
and to reduce noise and emissions made the size of aircraft engines and thus the 
blade size grow. Additional geometrical parameters as well as blade-to-blade 
interactions play a significant role. A method developed in 1973 Carstens [21] 
extendedPossio's integral equation to the case of a 2D cascade blade row, which 
is a model of a surface cut through a fan at constant radius. The kernel of the 
integral equation depends not only on Mach number and reduced frequency but 
also on stagger angle A,  interblade distance r and interblade phase angle 9. In 
[21] efficient numerical methods are developed both for this kernel and for the 
original Possio kernel. The computational results show the interesting effect 
of blade resonance. For constant values of the Mach number and the reduced 
frequency the lift coefficient of a reference blade varies strongly when the 
interblade phase angle is changed, and even drops to zero for specific resonance 
values. This effect is typical for unsteady compressible flows, and appears when 
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disturbance waves propagating in a compressible fluid are reflected between 
boundaries within a time period fitting the oscillation period of the boundary 
motion. This effect was also observed in wind tunnel tests on oscillating models. 
Frornrne and Golberg [22] reformulated Possio's kernel for a 2D airfoil in order 
to include the boundary conditioins of wind tunnel walls and were able to 
compute the effects of wind tunnel wall resonance. 

These examples are demonstrating, that fast analytical methods are still of 
high value, if the influence of several parameters in unsteady aerodynamics has 
to be scanned. The performance of similar studies with modern CFD methods 
requires a tremendous effort. 

9. Conclusion 
Comparing today's capabilities of unsteady aerodynamic computation with 

those of 60 years ago, much progress has been made due to the CFD develop- 
ment and the enormous growth of computer power. The first unsteady nonlinear 
transonic flow simulations with complex shock motions were obtained around 
1975. They were based on nonlinear potential equations, and were soon fol- 
lowed by solutions of the inviscid Euler- and the viscous Reynolds Averaged 
Navier-Stokes (RANS) equations. All of these methods adopt finite volume or 
finite difference methods to model the conservation laws of mass momentum 
and energy together with gas equations of state and different turbulence mod- 
els. Today they allow for computations of 3D flows around complete aircraft 
configurations with strong shock waves and flow separation in the whole speed 
range. Flutter computations are beginning to be performed by directly integrat- 
ing the equations of motion of the structure in time, together with computing the 
interaction between structural deformations and fluid dynamics. Such flutter 
simulations usually take many hours of CPU, while calculations of the flut- 
ter boundary as an Eigenvalue problem with Possio's aerodynamics needs just 
seconds or just minutes if TDLM aerodynamics is chosen. 

We can conclude that Possio's legacy is manifold. First his mathematical 
models for unsteady aerodynamics are still valuable and his papers are still 
being cited. Secondly he paved the way for Kuessner's theory and for later 
3D unsteady compressible methods like DLM and TDLM in addition to so- 
phisticated analytical methods in turbomachinery. Third he has shown, how 
fruitful analytical methods can be for understanding of physical mechanisms 
and for providing engineers with a feeling for the importance and magnitude of 
different parameters, both aspects of which are sometimes neglected today. 
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Abstract A central problem of AeroElasticity is the determination of the speed of the air- 
craft corresponding to the onset of an endemic instability known as wing 'flutter'. 
Currently all the effort is completely computationa1:wedding Lagrangian NAS- 
TRAN codes to the CFD codes to produce 'Time Marching' solutions. While 
they have the ability to handle non-linear complex geometry structures as well 
as viscous flow,they are based approximation of the p.d.e. by o.d.e., and re- 
stricted to specified numerical parameters.This limits generality of results and 
provides little insight into phenomena. And of course are inadequate for Con- 
trol Design for stabilization. Retaining the continuum models,we can show that 
the basic problem is a Boundary ValueIControl problem for a pair of coupled 
partial differential equations,and the composite problem can be cast as a non- 
linear ConvolutionlEvolution equation in a f i lber t  Space. The Flutter speed 
can then be characterized as Hopf Bifurcation point, and determined completely 
by the linearised equations. Solving the linearised equations is equivalent to 
solving a singular integral equation discovered by Possio in 1938 for oscillatory 
r e s p o n s e h  this paper we examine the Equation and its generalizations from the 
modern mathematical control theory viewpoint. 

keywords: Possio Equation, AeroElasticity, Instability, Wing Flutter 

1. Introduction 

The genesis of the Possio Equation and its role in the Aeroelasticity theory of 
the 1950's has been amply documented in [I]. This paper presents the current 
outlook on this equation, including generalizations, from the vantage point of 
recently developed control theory for partial differential equations [2]. 

A central problem of AeroElasticity is the stability of the wing structure in 
air flow. Much of the interest is in subsonic compressible flow. This can be 
formulated (see[3]) in the Time Domain as a nonlinear convolution/evolution 
equation in a Hilbert Space,and the instability ('Flutter') speed as a Hopf Bi- 
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furcation point which by the Hopf theory is completely determined by the lin- 
earised equations about the undisturbed flow. The linearised equations are of 
the Neumann boundary type, and hence can be cast equivalently as an Integral 
Equation -this is the Possio Equatioqwith a singular kernel. 

We may also place it in the context of the currently fashionable numerical 
computation schemes-indeed almost all the work in AeroElasticity today is 
computational. In essence the partial differential equations are approximated 
by ordinary differential equations - both Structural Dynamics and AeroDy- 
namics,and the most subjective part-often mysterious even-is the wedding of 
the Lagrangian Structure Dynamics to the Eulerian AeroDynamics. This is 
exactly where the Possio Equation would come in,if the full continuum models 
are retained. 

We begin in section 2 with the Wing Structure mode1,where we need to cal- 
culate the aerodynamic loading In section 3 we consider the AeroDynamic flow 
model-the Euler Full Potential Equation with aeroelastic boundary conditions 
for attached flow, and the Kutta-Joukowsky conditions. The linearization of the 
equations is in section 4. Finally in section 5 we study the role of the Possio 
Equation. 

2. Structure Model 
The simplest model - a uniform rectangular beam, endowed with two degrees 

of freedom, plunge and pitch - goes back to Goland [4] in 1945 (too late for 
Possio!). Let the projection of the flow velocity be along the positive X- 
axis,with x denoting the chord variable, -b I x < b. Similarly with y  denoting 
the span or length variable, along the Y- axis, 0  5 y  5 I ,  let 

where h( . )  is the plunge or bending along Z-axis; and O ( . )  is the pitch or torsion 
angle about the elastic axis located at x = ab. Then the structure dynamics 
equation is: 

Ms x ( . ,  t )  + KX(., t )  = Column ( L ( . :  t ) ,  hi'(., t ) ) ,  

where Ms is the MassIInertia matrix and K is the stiffness differential operator: 

d4  d 2  
Diagonal (EI-;  -GJ----), 

d y 4  d y 2  

L( . )  is the aerodynamic lift and hi'(,) the moment about the elastic axis, with 
boundary conditions: a) Cantilever 

h(0 , t )  = h'(0, t )  = 0  = O(0; t )  = Q f ( l ;  t )  = h f f f ( l ,  t )  = 0  = hf'(l ,  t ) .  



The Possio integral equation 

b) Free-Free 

See [5,6] for a Hilbert space formulation. The functions L( . )  and I C f ( . )  have to 
be determined from the Aerodynamic model. 

3. AeroDynamic Model 
The aerodynamic lift and moment (per unit length) are given by: 

b 
M ( y , t )  = / (s - a)6pdx 

-b 

61, = p(x; y; O f ,  t )  - p(x ,  y, 0-, t) ,  0 < y < 1; 1x1 < b 

where p(x,  y, z ,  t )  is the aerodynamic pressure,which along with the velocity 
vector q(x, y, z ,  t ) ,  the density ~ ( x ,  y ,  z ,  t )  are the basic aerodynamic vari- 
ables of interest. Under some simplifying assumptions (see[8]), we can show 
that the velocity is curl-free and is then characterized by the velocity potential 
$(x, y, z: t)  which satisfies the (Euler) Full Potential Equation: 

where q, is the undisturbed far-field velocity, a, is the far field speed of sound, 
em is the far field density. 

M (Mach Number) = (u) 5 1. 
a00 

The pressure is given by 

It is assumed that the far field potential is given by 



AeroElastic Boundary Conditions. 
The aeroelastic boundary conditions are: 
a) Attached Flow 

where w,(.) is the normal velocity of the structure, and is given by: 

b) Kutta-Joukowsky Condition: 

Sp = 0 ,  off the structure and at the trailing edge (goes to 0 ,  as x -+ b-) ,  

where Sp is the pressure jump : 

Sp = P ( X ,  Y, O+, t )  - P ( X ,  Y: 0 - 4  

We do not have an existence thcorem for this problem as yet! 

4. Linearization 
Because of the lack of existence theorem and other reasons it is customary to 

simplify the Full Potential Equation to the Transonic Small Disturbance Poten- 
tial (TSD) equation which is quasilinear and yet retains sufficient non-linearity 
to yield shocks - see [8]. Here however we go straight to the linearzation. Thus 
defining 

9=+-& 

we have: 

where now 
U 

U = / ( q , ) / ;  q i=Ucoscr i ;  M=- 
a00 

The boundary conditions are 

89 - = w a ( x ,  y ,  t ) ,  0 < y < 1 ;  1x1 < b, 
dz 



The Possio integral equation 

where 

With denoting the linearised acceleration potential 

the Kutta-Jukowslu conditions become: 

6 $ = $Izzo+ - $10- = 0,  off the structure, (3) 

64 i 0 as x i b - ,  O < y < l .  (4) 

These are the 3-D linear subsonic Compressible flow conditions with the aeroelas- 
tic boundary conditions - see [8] for more details. 

5. The Possio Integral Equation 
Let us begin with a statement of the Possio Integral Equation - actually this 

is a generalization of the original equation bearing his name which was 2-D, 
zero angle of attack, Fourier Transform (sinusoidal response) version. We state 
it for the 3-D case, in terms of the Laplace Transform variable A, Re X > a > 0, 
because the integrals defining the equation will be convergent (which is not the 
case for X = iw ,  as in the original formulation). Let 

To reduce complexity, we shall take 

ql = 1 (zero angle of attack) 

see [8] for the case 0 < ql < 1. Then the equation is (see [9]) 



and the spatial Fourier Transform of the kernel p(.: . ,  k )  is 

where 

We prefer the succinct form of the spatial Fourier Transform in contrast to the 
p ( . ,  ., k )  which is too long to specify see [10,13]. It has a singularity at the 
origin so that we have a singular integral equation [9]. Assume that (5) has a 
solution. Then the solution of the linearised potential equation (1) specialized 
for ql = l,q2,q3 both zero , is given by: 

= -(P^(iwl, iw2 ,  -2 ,  A ) ,  for z < 0 

where -oo < w l ,  w2 < cc and 

This is essentially a formula due to Kussner, an early German pioneer (see [I]) .  
We note that the existence of solution to (5) is still an open problem, despite 
early work on the problem [ll]. 
par To obtain the original 2 0  version of Possio we need to specialize to the 
'airfoil' case - or, 'high-aspect-ratio' wings where 

- - 
b 

- 00 
so that we may neglect the dependence on the y-coordinate . With ql equal to 
unity, this becomes 

d 2  v d 2  P d 2 ~  d Z y  - +2U- = & ( ( I  - M')-+ -). 
at2 d x d t  d x 2  d z 2  



The Possio integral equation 

And correspondingly (5) becomes: 

where setting w2 in (5) to be zero, we have, for w E (-oo, oo): 

,. 00 - k 2 M 2  + 2kAd2iw + ( 1  - M 2 ) w 2  
P ( i w ,  k )  = P ( X ,  k)e-"xdx = 

2 ( k  + i w )  
(10) 

where we have discarded the subscript 1.B In this case it becomes actually a 
Mikhlin multiplier - see [12 1. 

Second we need to consider the case of 'oscillatory' response-Fourier Trans- 
form in the time-domain; formally putting i w ~  for X everywhere. In this case, 
the corresponding kernel function becomes rather involved and too long to 
specify [13]; further, the integrals in the kernel function also require special 
interpretation as in [lo]. 

The importance of the Possio equation is that it links directly the structure 
velocity-the "input' in the problem to the 'output' E- the pressure jump which 
is all that is needed in the aeroelastic problem. We do NOT need to solve for the 
potential everywhere. On the other hand the potential can be determined from 
the pressure jump -this is the formula of Kussner (8). Thus solving the Possio 

- - 

equation is equivalent to solving the boundary value problem for the potential. 
It is true that this holds only for the linearised equations-we don't have yet a 
'non-linear' Possio Integral equation. But if stability - or Flutter speed - is the 
prime concern,then all we need is the solution to the Possio equation! Given 
this,it is surprising there is hardly a mention of this equation in recent Texts [15]. 
Indeed, a systematic use of the Possio equation would have reduced the size 
of the classic text [13]. Finally we note at present the existenceluniqueness of 
solutions to the Possio Equation is known only for the 'air-foil' case and even at 
that only for M = 0 and M = 1, (see [14 I). See [7] for some approximations. 
Otherwise the problem is open. 
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Abstract A review of the papers written by Camillo Possio on Flight Dynamics and Hy- 
drodynamics is presented. The scope of the note is to underline how the versatile 
young researcher succeeded in delivering interesting contributions to the engi- 
neering sciences that go beyond the renown equation that bears his name. 
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1. Introduction 
The works of Camillo Possio on unsteady aerodynamics [I]-[7] have deeply 

influenced the studies in the field of aeroelasticity up to the present days, as 
demonstrated by some recent works that exploited his derivations [8]-[lo]. For 
this reason the related papers are considered as his most important contributions 
to the engineering disciplines. As a matter of fact his scientific production was 
extremely prolific and diverse in spite of his untimely death under the last 
bombing that hit his native city, Turin, at the end of the Second World War, on 
April j th ,  1945. 

Beyond his seminal contribution to unsteady aerodynamics, Possio's works 
ranged from the analysis of fluid motion [ l l ,  121 to studies on physical prop- 
erties of fluids [13], from flight mechanics [14]-[16] and experimental fluid 
dynamics [17] to free surface effects on the flow field generated by distribu- 
tions of singularities [18]-[20]. These works deserve consideration not only 
because they reveal the versatility of his mind in applying a rigorous mathe- 
matical approach for describing physical phenomena, always preserving a deep 
practical understanding of the underlying physical system, but also because 
they are undoubtedly as interesting as the most renown ones. The present 
note will focus on five papers that represent the legacy of Possio to the fields 
of flight dynamics ([14] and [ l j ] )  and hydrodynamics ([18]-[20]), discussing 
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their significance in the framework of the current studies of the time on the two 
subjects. 

In Refs. [14] and [15], both written in 1938, Possio exploited his experience 
in managing basic models of oscillating lifting surfaces in order to derive some 
analytical results aimed at evaluating aircraft stability derivatives, that is the 
expressions of the perturbation terms of aerodynamic forces and moments that 
are required in the linearization of rigid aircraft equations of motion. The last 
part of his scientific activity was focused on the analysis of free-surface effects. 
In particular, between 1941 and 1943 he wrote a sequence of three papers that 
were devoted to the analysis of steady motion of heavy fluids under the influence 
of adistribution of singularities [IS], the interaction of a vortex in steady motion 
with a free-surface [19], and to the estimate of marine propeller efficiency as a 
function of its depth [20], pushing further the analysis of the problem that had 
been given approximate solutions by other scientists of the time. 

Without neglecting the originality and potential importance of the works 
that will not be discussed in the present note, the legacy of Camillo Possio to 
flight dynamics and hydrodynamics represents the major contribution (beyond 
Possio equation) that the young scientist could develop into a complete research, 
obtaining results that represented an advance in engineering knowledge at the 
time the papers were written, while preserving also nowadays a significant 
interest for the aerospace community. 

2. Possio and aircraft stability derivatives 
On January 1938 Camillo Possio published on the Commentationes Pontficia 

Academia Scientiarum (Proceedings of the Pontifical Academy of Sciencies) 
a work titled "On the Determination of Aerodynamic Coefficients for Aircraft 
Stability Analysis" [14]. The importance of this work can be easily understood 
when one considers that the formulation of rigid aircraft equations of motion 
had already reached full maturity for a long time in 1938, the seminal book by 
Bryan [21] dating back to 1911, but the evaluation of the so called dynamic 
stability derivatives was still an open problem. 

The approach proposed by Bryan for the analysis of aircraft stability is based 
on the derivation of the equations of motion from first principles, the determina- 
tion of aircraft equilibria (trimmed flight) and the linearization of the equations 
of motion in the neighborhood of the considered trim condition. In Bryan's 
theory, aerodynamic forces and moments are expanded in linear form as a func- 
tion of aircraft state and control variables, under some reasonable simplifying 
assumptions. 

After writing the linear model, the main problem for a meaningful aircraft 
stability analysis is to provide reasonable estimates of aircraft stability deriva- 
tives, that is, the partial derivatives of aerodynamic forces and moments with 
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respect to state and control variables, divided by a mass parameter (the mass 
for force equations or the relevant moment of inertia for each one of the three 
attitude equations). Stability derivatives may change significantly, depending 
on the considered trim condition and aircraft configuration. The determination 
of the so called static stability derivatives (that is, stability derivatives made 
with respect to aerodynamic angles or velocity components) can be performed 
with different degrees of accuracy, but a reasonable estimate is not too a difficult 
task. On the converse, the evaluation of rotary and dynamic derivatives, that is 
stability derivatives with respect to angular velocity components and time deriv- 
atives of aerodynamic angles, is never trivial. In his earliest work on aircraft 
stability (that was written with W.E. Williams in 1903 before Wright brothers' 
first powered flight, and published on January 1904 only three weeks after the 
Flyer took-off!), Bryan simply neglected the terms depending on the rate of 
change of incidence and sideslip angles [22]. Flight experience and more ac- 
curate mathematical derivations rapidly demonstrated that unsteady downwash 
effects on the horizontal tail were sizable and cannot be neglected. 

Unfortunately, dynamic derivatives escape also direct experimental evalua- 
tion, not only because of scale and wind-tunnel effects (the latter analyzed by 
Possio in [17]) but also because forced oscillation experiments cannot deter- 
mine separately the contributions of angular velocity and rate of variation of 
aerodynamic angles to force and moment components. 

As for evaluation of dynamic stability derivatives from theoretical aerody- 
namic results, Possio himself underlined how the effects of small amplitude 
oscillations on lift distribution cannot be described by a two-dimensional rep- 
resentation, that, together with other limitations, would make it impossible 
to evaluate stability derivatives with respect to roll angular velocity, nor by a 
simple strip theory, even under the assumption of a low frequency parameter 
w = Rb/(2Vo), R being the frequency of the oscillation, b the wing span and 
Vo the trim velocity [14]. Exploiting his analysis of the behavior of oscillat- 
ing lifting surfaces, Possio derived a rigorous description of the vorticity and 
pressure distributions over a lifting surface in a harmonic oscillation, under the 
assumptions of small incidence and oscillation amplitude and large wing aspect 
ratio A. 

His derivation for a wing like that shown in Fig. 1 was based on Prandtl's 
acceleration potential approach [23]. The total derivative of the velocity V can 
be expressed as 

where the acceleration potential cp satisfies Laplace equation v~~ = 0. Writing 
Eq. (1) in linear, nondimensional form (that is assuming small perturbation of 
a uniform flow V o  of unity modulus), the vertical component v of the velocity 



Figure 1. Elliptic wing in a uniform current [14] 

field must satisfy the equation 

Taking into account that v + 0 for x + -m, it is possible to integrate Eq. (2), 

The restriction of v over the surface C of the oscillating wing must satisfy 
the flow tangency condition on C, that is v(x, z) = dq ld t  - a, where q is 
the vertical displacement of the point (x,  z )  E C and a the wing incidence. 
For a harmonic oscillation all the terms can be expressed in complex form as 
cp = q e i w t  and v = ue iWt ,  where i is the imaginary unit and cp and ?j are complex 

functions of x, y,  and z. The restriction of f j  over C can thus be written as 

Noting that for incompressible fluids no time derivatives of cp are present in 
the Laplace equation governing acceleration potential, it is possible to state 
that cp is the acceleration potential of a steady flow field Cp with asymptotic 
velocity Vo around a lifting surface with the same shape of C. Indicating 
the horizontal and vertical velocity components of the steady flow field Cp 
with 1 + u' and w, respectively, and applying Bernouilli's theorem for small 
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perturbations u', w << 1, it is cp = u'. It is also dpldy = dwldx, because C, 
is irrotational. By substituting w in Eq. (3 )  and integrating by parts, one gets 

The flow field C, can be generated by a (steady) complex vorticity distribu- 
tion y(x, z )  over C, that Possio determined following Prandtl theory for steady 
motion of finite wings, expressing 7 in terms of Glaurt's trigonometric series. 
The details of the procedure are here omitted for the sake of brevity, but can 
be found on Possio's paper [14]. It must be observed that, as explicitly under- 
lined by Possio himself, the flow field Cp and its vertical component w bear 
no physical meaning. In particular, although w(x, z )  can be decomposed into 
the sum of two contributions wl and w2 related to the circulation distribution 
in Cp on the wing and downstream of it, respectively, the two corresponding 
terms fjl and 'U2 obtained by substituting wl and wn in Eq. (4 )  are not related to 
the unsteady distribution of vorticity over and downstream of the wing in the 
actual unsteady flow field. 

In the final part of the paper Possio derived some simplified relations for the 
particular case of an elliptic wing. He also demonstrated that the approximation 
of his prediction for the unsteady case has the same accuracy of Prandtl's model 
for the steady case and developed a simple example for an isolated wing which 
undergoes a vertical harmonic oscillation. He anticipated that a complete set 
of results on aerodynamic forces and moments generated by roll, pitch, yaw 
and heave oscillations of a complete aircraft configuration would have been 
discussed in a subsequent note. On December 1938 this note was published by 
the italian journal L'Aerotecnica under the title "Determination of Aerodynamic 
Actions Due to Small Aircraft Oscillations" [15]. Figure 2 shows some of 
Possio's original plots, namely Figs. 3 through 9 taken from Ref. [15]. 

It should be noted that Possio presented his results adopting the italian nota- 
tion in use at his time, where C, represents the lift coefficient, from the word 
portanza, and C,, is the roll moment coefficient, where mr stands for mo- 
mento di rollio. In the paper, C, indicates the drag coefficient (resistenza), Cd 
the side-force coefficient (deriva) while Cmb and Cmi indicate the pitch and 
yaw moments (beccheggio and imbardata), respectively. 

In the last paragraph of the paper Possio carried out a numerical example for 
evaluating the differences with respect to what he called "the usual approximate 
methods" that neglect part of the unsteady aerodynamic effects, rigorously taken 
into account by his approach. While the terms in phase with the variation of 
the angle of attack where shown to be predicted well even by the approximate 
methods, the terms in quadrature with a were demonstrated to be significantly 
different, with variations that ranged from 28% for the pitch moment stability 
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Figure 2. Lift coefficient C, in plunge (Figs. 3 and 4) and pitch motion (Figs. 5 and 6), and 
roll coefficient C,, for roll oscillations (Figs. 7 and 8) from Ref. [I51 
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derivative with respect to di up to 200% for the lift derivative with respect to a: 
~ 5 1 .  

3. Possio's analysis of free-surface effects 
In 1941 Possio published his first work on free surface effects on theAnnali di 

Matematica Pura e Applicata (Annals of Pure and Applied Mathematics) [18], 
analyzing the steady velocity field created by a distribution of singularities on 
the free surface of a heavy fluid. 

Lamb and Havelock demonstrated that under the usual hypotheses of perfect 
fluid and infinitesimal perturbation an infinite set of solutions is analytically 
plausible for this problem [24],[25]. Indicating with V  and Vo the local and 
the asymptotic velocity, respectively, Rayleigh proposed a method to define a 
well-posed problem by assuming that an elementary viscous-like force per unit 
mass in the form -p (V  - Vo) acts on the fluid, where p  is a positive parameter. 
The flow field for a perfect fluid was thus obtained in the limit as p -+ 0. 

Possio provided an alternative formulation based on a more rigorous model. 
While retaining the assumption of perfect fluid, he considered the stationary 
motion as the limit of an unsteady one, started with the fluid at rest when a 
perturbation created by the singularities is suddenly applied at t = 0. The gen- 
eral solution can be expressed in terms of velocity potential as @ ( x ,  y, z ,  t )  = 
Gi(x ,  y ,  z )  + @,(x, y,  z ,  t ) ,  where Qi is the potential determined by the singu- 
larities distribution and its value is suddenly assumed at t  = 0, while a, is an 
additive potential satisfying the Laplace equation V2@, = 0, with continuous 
first derivatives in the half-space z  > 0 and vanishing at infinity except in the 
downstream direction. The formulation of the unsteady problem is well posed 
and it admits a unique solution. If the perturbation is created by a distribution 
of sources or doublets, the solution is given by 

@ i ( z , y , z )  = [ T d O L C Y F ( m ; ~ ) e m k z + i m k d  dm. (5) 

@,(r, Y ,  z ,  t )  = d0 Lm f (m, 0 ,  t)emkr+imku d m  (6) 

with k = g/Vo2 and w = x  cos(0) + y  sin(0). F ( m ,  0 )  is a continuous bounded 
function, with continuous bounded first derivatives in the set m >_ 0 and -n 5 
0  5 n, such that F + 0 as e-mkz if m -+ m. Finally, f is an arbitrary function 
such that the integral is defined in z > 0 and differentiation under the integral 
sign is also defined. 

Possio demonstrated that the stationary additional potential @: obtained as 
limt,, @,(x,  yl z ,  t )  coincides with the expression obtained by Rayleigh, and 
satisfies the limit condition imposed on the potential and its first derivatives at 
infinity. He also extended his approach to a more general situation where the 



perturbation is given by a pressure discontinuity, so as to include the flow field 
generated by a propeller or an airfoil. 

This investigation was naturally developed into the study of the potential that 
describe the velocity field generated by a vortex with circuitation r in uniform 
motion at a depth h from a free surface [19]. In this case the potential can be 
expressed as 

where a, is the additional potential required to satisfy the boundary condition 
at the free surface, that is, pressure p in the fluid at the surface is equal to 
the external pressure pa in the space over the surface. As usual, the potential 
function +, must satisfy the Laplace equation v2@, = 0 in the half-space 
occupied by the fluid, the first derivatives vanishing upstream of the vortex, so 
that a well-posed problem is obtained. 

Possio found the expression of @ ,  and investigated its numerical computa- 
tion. The theory was then applied to the problem of the uniform motion of an 
airfoil of chord ! for small values of the ratio E = ! /h .  The resulting lift and 
drag coefficients were expressed as 

with p = g h / ~ $  The aerodynamic coefficients were similar to those obtained 
by Prandtl for the small E case, expressed in terms of a virtual aspect ratio 
X = 2e2P/,/3~. Possio determined X for arbitrary values of E ,  although his 
analysis was limited to the flat plate. In this case the virtual aspect ratio is given 
by 

= 2 ~ 2 ~ 2 / ( ~ F ' )  

7.r { J02 [1 / (2F2) l  + J12 [1/(2F2)1) 
(9) 

where Jo( ) and J1( ) are Bessel functions and F = V o / a  is the Froud 
number. The diagram of Fig. 3 represent the behaviour of 1/X as function of 
F for different values of E .  

In Ref. [20] Possio investigated free surface effects on propeller efficiency. 
This problem had been already addressed by Dickmann [26], under the as- 
sumption that the field external to the wake created by the propeller can be 
represented by a distribution of sinks over the propeller disc, thus exploiting 
the results of Havelock on wave resistance generated by a given singularities 
distribution [25]. 

Possio provided a more accurate computation of wave resistance and ex- 
tended the investigation to the case of more than one propeller. Letting h be 
the depth of the propeller disc center, measured along the z axis oriented down- 
ward, and E = r / h  the ratio between the disc radius and the depth, Possio 
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Figure 3. Reciprocal of virtual aspect ratio as a function of Froud number. 

represented the wave resistance generated by a uniform distribution of sinks on 
the propeller disc a as 

where ,B = g h / ~ 2  and 

Dickmann results refers to the case of a sink distribution concentrated in the 
disc center with E = 0, that is just the first term in the series expansion of Eq. 10. 
On the converse, Possio computed f for different values of the ratio E and of 
the Froud number. 

He also evaluated propeller efficiency loss due to wave motion induced on the 
free surface. Denoting with u& the average velocity increment at the propeller, 
with P and T the propeller power consumption and thrust, respectively, the 
actual propeller efficiency is q, = TVo/P,  while the efficiency in an infinite 
fluid is 7 = T(Vo + u&)/P .  By talung into account that u&/Vo << 1, it is 
possible to write 

where ud denotes the velocity increment at the propeller disc. 



4. Conclusions 
Camillo Possio demonstrated with his extremely diverse scientific activity an 

unusual capability of handling complex mathematical models while preserving 
a deep physical insight on the underlying engineering problem. This note was 
aimed at presenting his works on flight dynamics and hydrodynamics subjects, 
the only fields where fate allowed the young scientist to deliver an articulate 
contribution beyond the state of the art of his time and beyond the seminal 
equation that bears his name. 
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Abstract This paper recalls the work of D. Pompeiu who introduced the notion of set 
distance in his thesis published oile century ago. The notion was further studied 
by F. Hausdorff, C. Kuratowski who acknowledgedin their books the contribution 
of Pompeiu and it is frequently called the Hausdorff distance. 
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1 The thesis of Pompeiu 
On March 31-st, 1905, Dimitrie Pompeiu (1873-1954), a distinguished Ro- 

manian mathematician, defended at the FacultC de Sciences de Paris his Ph.D. 
work Sur la continuite' des fonctions de variables complexes . The comission 
was chaired by H. PoincarC and included G. Koenigs and E. Goursat and the 
work was published the same year in [14]. P. Montel, a wellknown French 
mathematician, has appreciated the remarkable contribution of Pompeiu's the- 
sis by the words: Pour un coup d'essai, c'est un coup de maitre, [I]. Ideas, 
notions and results discussed in the thesis of Pompeiu have attracted the in- 
terest of important contemporary mathematicians: P. PainlevC, A. Denjoy, F. 
Hausdorff and is now a part of the universal mathematical heritage. Pompeiu 
studied a problem formulated by PainlevC [13] already in 1897, concerning 
the singularities of uniform analytic functions. At that time, it was generally 
admitted that a uniform analytic function cannot be continuously extended on 
the set of its singularities. However Pompeiu could construct examples of such 
functions which are continuous on the set of their singularities and this set has 
positive measure. The controversy that followed was solved in 1909 by Denjoy 
who confirmed that the arguments of Pompeiu are correct. This was a turning 
point in the theory of uniform analytic functions and Pompeiu was considered 
as the best specialist in this field, at the beginning of the last century [I]. Pom- 
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peiu used an example due to A. Koepcke (pag.45 in [14]) which was rather 
complicated. Some years later, in [16], he constructed much simpler examples 
of the same type, that is real functions with bounded derivatives that have roots 
in any interval and are not identically zero in some interval. Such functions are 
now called Pompeiu functions and are included in many monographs on real 
functions. 

Very well documented presentations of this moment from the history of 
mathematics may be found in [8], [9]. In his arguments in the complex plane, 
Pompeiu needed a notion of distance between closed curves. It is to be re- 
marked that quite in the same period, M. FrCchet introduced in his Ph.D. thesis 
(published a little bit later in [3]) the distance between two elements and the 
axioms of metric spaces. This is the context in which D. Pompeiu defines in 
1905 the notions of kcart and e'cart mutuel between two sets ([14], p.17 and 
18). Preserving his notations, let Eh and Ek be two compact subsets in the 
plane. The e'cart of Eh with respect to Ek, denoted by Ahk was defined as the 
maximum of the distances of an arbitrary point Ph E Eh to the set Ek. The sum 
Ahk + Arch was called the reciprocal distance ( k a r t  mutuel) between the sets 
Eh and Ek. This allows Pompeiu to see the compact subsets in the plane as the 
elements of another set and to define in a natural way limits, closure, etc. for this 
"set of sets". Consequently, Pompeiu is also considered as one of the founders 
of the theory of hyperspaces, see McAllister [lo]. The thesis of D. Pompeiu 
is the birth certificate of the notion of distance between sets and its importance 
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was immediately remarked by the contemporary mathematicians. Already in 
1905, in his report for the Jahrbuch fuer Mathematik, on p.455 A. Gutzmer 
calls the Pompeiu distance Einfuehrung eines neuen Begriffes der Mengenlehre 
(the introduction of a new concept in set theory). In 1914,in his famous book 
[5], Hausdorff studies the notion of set distance, in the natural setting of metric 
spaces and with a small modification (the sum si replaced by the maximum) : 

He devotes a consistent paragraph to the study of the properties of the dis- 
tance and he quotes correctly Pompeiu [5] on p. 463, as the author of this 
notion. Moreover he also establishes that the distances defined with the "sum" 
or with the "max" give the same toplogy, that is they are equivalent. The same 
considerations may be found in his book from 1927, [6], where Pompeiu is 
quoted at page 280. It is to be noted that at that time, the main text of a book 
did not include any reference to the origin of a subject and all these references 
were concentrated in a short appendix at the end (Quellenangabe). Probably, 
due to this reason, many mathematicians didn't notice the reference to Pom- 
peiu's work [14] and the set distance is frequently termed as the Hausdorff 
distance. Other names used in the scientific literature are Pompeiu distance or 
Pompeiu-Hausdorff distance, Hausdorff-Pompeiu distance. The great Polish 
mathematician C. Kuratowski, in his treatise [7], on p. 106 mentions both the 
thesis of Pompeiu from 1905 and the book of Hausdorff from 1914. This is 
done in a footnote, on the page where the notion is introduced and is completely 
accessible to the reader. In 1978, McAllister [lo] published a remarkable his- 
torical study devoted to the first 50 years in the theory of hyperspaces. The role 
of Pompeiu's thesis is underlined clearly: "who [Pompeiu] may with some jus- 
tice be said to have invented hyperspaces, and Hausdorff's use of them in 1914 
in his treatise Grundzuege der Mengenlehre had made them very well known" 
(p. 310) and similarly on p. 31 1 ''I have found no evidence of the Hausdorff 
metric itselfbefore Pompeiu's thesis". There are many notions of set distance 
which are not equivalent with the Hausdorff-Pompeiu distance. For instance, 
one can define the distance between two Lebesgue measurable subsets in an 
Euclidean space as the measure of their symmetric difference. However, the 
Hausdorff-Pompeiu metric seems to be the only one with a remarkable com- 
pactness property: if (A,) is a sequence of compacts, bounded with respect to 
n, then there is a compact subset A and a subsequence again indexed by n, such 
that : 

lim d (A,, A) = 0.  
,-DO 

This property makes the Hausdorff-Pompeiu distance a fundamental notion in 
the study of the topologies on families of subsets and in the modern theory 



of shape optimization (optimal design). The interested reader may consult 
the recent monograph [ l l ]  and its references for a survey of the mathematical 
literature on geometric optimization. 

2. The Pompeiu conjecture 
The whole mathematical work of Pompeiu is characterized by a profound 

originality, by the introduction of many fruitful ideas and methods. We briefly 
recall the definition in 19 12 of the areolar derivative (see [15]), further devel- 
oped by M. Nicolescu, Gh. Calugareanu, N. Cioranescu, N. Teodorescu, Gr. 
Moisil and other. This is in fact the fundamental d - operator from complex 
analysis. In this context, Pompeiu also proved the Cauchy- Pompeiu f ormula 
which appeared here for the first time, [9]. Probably the best known paper of 
Pompeiu is his Note [17] from 1929 (recent estimates indicate almost one thou- 
sand articles quoting it). Here one can find the famous Pompeiu conjecture, 
still unsolved completely : 

Let f be a continuousfunction in the plane and D a compact subset such that 

where a ( D )  denotes any compact subset in the plane obtained by rigid motions 
of D. Then, is it true that f is null in the plane ? 

For the case when D is a disk, there are counterexamples [4] of the form 
f ( x ,  y )  = s in(ax  + b y )  with a ;  b  appropriately chosen real numbers. For any 
other domains in the plane, the answer seems to be positive although just some 
special cases are solved [19]. We underline the fundamental character in the 
mathematical analysis of this property (if proved) and its relationship with the 
Schiffer conjecture (formulated later) concerning the eigenvalues of the Laplace 
operator with Cauchy conditions on the boundary, [2], [18]. 

0 .  Onicescu, a student of Pompeiu and a wellknown Romanian mathemati- 
cian, said that the creations of Dimitrie Pompeiu are "simple, plastic, global 
and full of sign$cance in the world of science", [12]. 
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Abstract In the dynarnical theory of granular matter, the so-called table problem consists 
in studying the evolution of a heap of matter poured continuously onto a bounded 
domain R c R2. The mathematical description of the table problem, at an equi- 
librium configuration, can be reduced to a boundary value problem for a system 
of partial differential equations. The analysis of such a system, also connected 
with other mathematical models such as the Monge-Kantorovich problem, is the 
object of this paper. Our main result is an integral representation formula for the 
solution, in terms of the boundary curvature and of the normal distance to the cut 
locus of n. 

keywords: granular matter, eikonal equation, singularities, viscosity solu- 
tions, optimal mass tranfer 

1. A PDE model for sandpile growth 
In recent years, the attention of many authors has been focussed on the system 

of partial differential equations 

in a given domain R c Rn. 
For n = 2, a typical context of application for (1) is granular matter theory. 

The so-called 'table problem', for instance, consists of describing the evolution 
of a sandpile created by pouring dry matter onto a table. Different approaches 
to this problem have been proposed in the literature, such as: the variational 
model developed by Prigozhin [20]; the ODEIPDE Model introduced in [2] 
and [14] by Evans and co-authors; the BCRE Model initiated by Boutroux and 
de Gennes[3] and elaborated by Hadeler and Kuttler[l7]. In our analysis, we 
shall be concerned with the BCRE model, where the table is represented by a 
bounded domain S2 c R ~ ,  and the matter source by a function f ( t :  x) > 0. 
The physical description of the growing heap is based on the introduction of 
the so-called standing and rolling layers. The former collects the amount of 
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matter that remains at rest, the latter represents matter moving down along the 
surface of the standing layer--eventually falling down when the base of the 
heap touches the boundary of the table. 

As pointed out in [17], system (1) is related to equilibrium configurations 
that may occur in presence of a constant source. To explain this connection, let 
us denote by u(x)  and v(x),  respectively, the heights of the standing and rolling 
layers at a point x E R, for an equilibrium configuration. For physical reasons, 
the slope of the standing layer cannot exceed a given constant (the angle of 
repose)-typical of the matter under consideration-that we normalize to 1. 
Consequently, the standing layer must vanish on the boundary of the table. So, 
IDul 5 1 in R and u = 0 on dR. Also, in the region where v is positive, 
the standing layer has to be 'maximal', for otherwise more matter would roll 
down there to rest. On the other hand, the rolling layer results from transporting 
matter, poured by the source, along the surface of the standing layer at a speed 
that is assumed proportional to the slope D u ,  with constant equal to 1. The 
above considerations lead to the boundary value problem 

Notice that (2) is the same equilibrium system one would obtain fromPrigozhin's 
variational model. 

1.1 Connection with optimal mass transfer 
It is worth noting that system (1) arises in Monge-Kantorovich theory, as 

explained in the monograph [15], and futher analyzed in [I] and [16]. In the 
present context, we will just observe that the connection of the above system 
with optimal mass transfer can be obtained by looking at the so-called 'dual 
problem', which consists in maximizing 

among all Lipschitz continuous functions u : R R, with Lip(u) < 1, 
vanishing on dR. Indeed, as proved in [4], the boundary value problem (2) 
turns out to be the system of necessary conditions satisfied by any maximizer u 
of (3), taking v equal to the associated Lagrange multiplier. Such a framework 
is also related to the optimization problem studied in [12]. 

1.2 Solution of the equilibrium system 
The main purpose of the present work is to provide a full analysis of prob- 

lem (2), including existence, uniqueness, and regularity of the solution. For 
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existence and uniqueness, we shall follow the approach of [5]  for the case of 
n = 2, and of [6]  for the general case n > 2. As for regularity, we shall rely 
on the results of [7]. It is well-known that the eikonal equation 

does not possess global smooth solutions in general, neither does the conserva- 
tion law 

-div(vDu) = f . 

Therefore, we ought to explain what we mean by a solution of (2). 
We say that a pair ( u ,  v )  of continuous functions in R is a solution of problem 

(2) if 

u  = 0 on dR, l lD~l l , ,~  5 1, and u  is a viscosity solution of 

rn v  2 0 in R and, for every test function 4 E C,OO(R): 

For the reader's sake, we now recall the definition of viscosity solution. The 
superdifferential of a function u  : R 7. R at a point x E A is the set 

u ( x  + h )  - u ( x )  - ( p ,  h)  

b 50) , 

while the subdifferential D-u is given by the formula D-u(x)  = - Df ( -u )  ( x ) .  
We say that u  is a viscosity solution of the eikonal equation lDul = 1 in R if, 
for any x E R, we have 

Before describing our main results, we need to introduce some useful geomet- 
ric properties of bounded domains with smooth boundary. This is the purpose 
of the next section. 

2. Distance function 
Let R be a bounded domain with c2 boundary dR.  In what follows we denote 

by d : -+ R the distance function from the boundary of R, that is, 

d(x) = min ly - X I  , 
ycan 



and by C the singular set of d, that is, the set of points x  E R at which d  is not 
differentiable. Since d  is Lipschitz continuous, C has Lebesgue measure zero. 
Introducing the projection II(x) of x  onto dR in the usual way, C is also the 
set of points x  at which H(x)  is not a singleton. So, if n ( x )  = { T )  for some 
x  E R, then d  is differentiable at x  and 

REMARK 1 We recall that the distance function d  is the unique viscosity solu- 
tion of the eikonal equation lDul = 1 in R, with boundary condition u = 0 in 
dR. Equivalently, d is the largest function such that I 1 D ~ l l ~ , ~  < 1  and u = 0 
on dR. 

For any x  E dR and i = 1 ,  . . . , n - 1, the number K ~ ( x )  denotes the i - t h  
principal curvature of dR at the point x,  corresponding to a principal direction 
ei(x)  orthogonal to Dd(x) ,  with the sign convention ~i > 0 if the normal 
section of R along the direction ei is convex. Also, we will label in the same 
way the extension of ~i to a \ C given by 

K ~ ( X ) = K ~ ( I I ( Z ) )  V X E ~ \ \ .  ( 5 )  

Denoting by p  18 q the tensor product of two vectors p, q E Rn, defined as 

( P  @ 4 ) b )  = P (q> 2 )  , v x  E Rn , 
for any x  E n and any y  E II(x) we have 

~ i ( y ) d ( x )  5 1  Vi = 1 , .  . . ,n - 1. 
- - 

If, in addition, x  E R\C, then 
n-l 

n i ( x ) d ( x ) < l  and D ~ ~ ( x ) = - C  ~i ( x )  
1  - K~ ( x )  d ( x )  ei ( x )  @ ei ( x )  

i=l 
..(.I where ei(x)  is the unit eigenvector corresponding to I - t i i ;x )d(z ) .  

We now turn our attention to the closure of C, a set that is also called the cut 
locus of dR in R, and to the function 

rnin { t  > o : x  + t ~ d ( x )  E C) ~x  E E\E, 
T ( X )  = ( 6 )  

o ~ x E ' E .  
Since the map x  H x  + ~ ( x ) D d ( x )  is a natural retraction of onto E, we will 
refer to T ( . )  as the maximal retraction length of R onto C or normal distance to - 
C. The regularity properties of T are described by the following theorem due 
to Li and Nirenberg [I91 (see also [18]). 

THEOREM 2 Let R  be a bounded domain in Rn with boundary of class c211. 
Then the map T dejned in (6) is Lipschitz continuous on dR. 
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3. A representation formula for the solution 
Before stating a precise result for our problem, let us show a formal derivation 

of the representation formula for the solution in the case of n = 2. Suppose 
(u, v )  is a smooth solution of (2). In view of Remark 1, we can take u = d. 
Moreover, suppose that v  vanishes on E-this is reasonable from the point of 
view of the physical model, and can also be justified by a rigorous argument. 
Let us proceed to compute, for a given point x  E R \C and for any t  E (0 ,  T ( x ) ) ,  
the derivative 

(recall that Dd(x + tDd (x ) )  = Dd(x ) ) .  Now, observe that 

since ~ ( x  + tDd (x ) )  = ~ ( x )  and d(x  + tDd (x ) )  = d (x )  + t .  Hence, V ( t )  := 

v ( x  + tDd (x ) )  satisfies the Cauchy problem 

Thus, solving the above problem and noting that v ( x )  = V(O), we conclude 
that, in R \ C, v  must be given by the formula 

REMARK 3 We note that the above formula entails that v vanishes at all points 
x  E R \ C at which the half-line spanned by Dd(x)  fails to intersect the 
support of f before hitting E. This description, which agrees with physical 
evidence, extends to dimension 2 the analogous result obtained in [17] for the 
one-dimensional case. 

4. Existence, uniqueness, regularity 
The following result, proved in [5] for n = 2 and in [6] for n 2 2, ensures 

the existence and uniqueness of the solution of (2), as well as a representation 
formula for such solution. 

THEOREM 4 Let R c Rn be a bounded domain with boundary of class C 2  
and f > 0  be a continuous function in S1. Then, a solution of system ( 2 )  is 



given by the pair (d ,  v f ) ,  where 

0  v x  E C, 
(7) 

where, t ~ ( x )  denotes the i - th principal curvature of dR at the point n ( x ) .  
Moreovel; the above solution is unique in the following sense: if ( u ,  v) is 

another solution of ( 2 ) ,  then v  = v f  in R, and u  = d in {x E R  / v f  > 0) .  

A noteworthy aspect of the above result is that we do construct a continuous 
solution vf, instead of just a measure or a function in L 1 ( R ) .  So, Theorem 4 
could also be viewed as a regularity result. Moreover, formula (7) can be used to 
derive further regularity properties. This will be the object of our next section. 

4.1 Regularity 
A natural question to ask is what kind of regularity one can expect for the 

solution (d l  v f )  of problem (2 ) .  For the first component, this is well understood: 
while d is of class C 2  on a neighborhood of dR,  the maximal regularity of d in the 
whole domain n i s  semiconcavity, a generalization of concavity preserving most 
of the local properties of concave functions (see [8] for a detailed description 
of such a class of functions). 

On the other hand, the situation is different for the second component. In- 
deed, formula (7) suggests that the regularity of v f  should depend on the regu- 
larity of f and T .  Therefore, our original problem leads to the question of the 
global regularity of the normal distance. 

While it is easy to prove that T is continuous on a ,  and locally Lipschitz 
in n \ when dR E C211, the following example shows that r may fail to be 
globally Lipschitz continous on n. 
EXAMPLE 5 (THE PARABOLA CASE) In the cartesian plane consider the set 
R := { ( x ,  y )  E R2 I y > x2), whose boundary is a parabola with vertex (0,O). 
By the symmetry of dR with respect to the vertical axis we deduce that 
must be contained in such an axis. Moreover, C = ( ( 0 ,  y )  1 y 2 1/21 and 
r ( ( s ,  s 2 ) )  = id"-. Then, a straightforward computation shows that, for 
a > 0  sufficiently small, 

for some M > 0. So, T cannot be Lipschitz continuous in the whole set R. 

On the positive side, we present two Holder regularity results in R' recently 
obtained in [7]-the former for T the latter for v f .  
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THEOREM 6 Let R be a bounded simply connected domain in R2 with analytic 
boundary, different from a disk. Then, there exists an integer m > 2 such that 
.r is Holder continuous in R with exponent m. 
In particular, T is at least 213-Holder continuous, and Example 5 describes the 
'worst' possible case. 

THEOREM 7 Assume that f is a Lipschitz continuousfunction and that R is 
a simply connected bounded domain in R~ with analytic boundary, diferent 
from a disk. Then vf is a Holder continuous function with exponent for 
some integer m > 2. 

5. Application to a variational problem 
We conclude this paper with an application to a problem in the calculus of 

variations which may seem quite unrelated to the present context at first glance. 
Let us consider an integral functional of the form 

where f E Lm(R)  is a nonnegative function and h: [0, +a) + [O, +m] is a 
lower semicontinuous function (possibly with non-convex values) satisfying 

h(R)  = 0 ,  h ( s )  >_ max(0, A(s  - R) ) for some constants R,  A > 0. ( 9 )  

In a pioneering work, Cellina [ I l l  proved that, if R is a convex domain (that 
is, an open bounded convex set) in R~ with piecewise smooth (C2) boundary 
and f - 1, then J does attain its minimum in W;"(R),  and a minimizer is 
explicitly given by the function 

provided that the inradius m of R is small enough. (We recall that rn is the 
supremum of the radii of all balls contained in R.) This result has been extended 
to convex domains in Rn and to more general functionals in subsequent works 
(see [9, 10, 13, 21, 221). One common point of all these results is that the set 
R is always a convex subset of Rn. In this paper we will see that, using the 
representation formula (7), the function un defined in (10) is a minimizer of J 
in w ~ " ( o ) ,  even on possibly nonconvex domains. 

We say that a set R is a smooth K-admissible domain, K E R, if it is a 
connected open bounded subset of Rn with C2 boundary, such that the mean 
curvature of is bounded below by K, that is 



We note that every connected bounded open set R C Rn with C2 boundary is 
a K-admissible smooth domain for every K satisfying 

K 5 min H(y) . 
V E ~ R  

The following is a special case of a more general result obtained in [6]. 

THEOREM 8 Let h: [0, m) -+ [0, oo] be a lower semicontinuousfunction sat- 
isfying (9), let R c Rn be a smooth K-admissible domain, and let f be a 
nonnegative Lipschitz continuous function in R. If 

where 

then thefunction un(z) = R d(z) is a minimizer in W;"(R) of thefunctional 
J deJined in (8).  

We will now sketch the proof of Theorem 8 in order to point out the connection of 
this problem with (2). Given f as above denote once again by vf the continuous 
function defined in (7). The first step of the proof, we will comment no further 
on in this context, consists of estimating the integrand in the representation 
formula for v f  as in [6], to show that 

Therefore, in view of assumption ( l l ) ,  we have 

Let u E W;"(R). Since h satisfies (9) and v f  satisfies (14), we have that 

hence 

where 

Since vf is bounded, by a density argument equation (4) holds for every $J E 

W;"(R). Choosing q5 = u - 110, we obtain that A vanishes, so that J(u) 2 



A PDE Model for Sandpile Growth 49 

J ( u n ) .  Since u was an arbitrary function in wJ;'(R), we have proven that 21a 
is a minimizer of J in w;>' (a). 
REMARK 9 We note: 

1) The result of Theorem 8 can be extended to nonsmooth domains, such as 
domains satisfying a uniform exterior sphere condition. See [6] for details. 

2) If R is a convex domain with smooth boundary, then condition 

is certainly satisfied provided that 

Namely, it is enough to observe that a convex domain is a 0-admissible domain, 
and that c(0, r n )  = rn .  Condition (15) was first introduced in [ l l ]  in the case 
o f f  r 1. In [9] it was proven that, if (15) does not hold, then J needs not have 
minimizers in w;;' (a). 

3) Assumption (1 1) of Theorem 8 for the existence of a minimizer of J is 
optimal in the following sense. Let h(s)  = max(0, A(s- R)} for some positive 
constants A and R, let f (x) = 1 and let R = B,(O) c R n .  Then rn = r ,  and 
R is a (l/r)-admissible domain. Since c ( l / r ,  r) = r l n ,  Theorem 8 states that 
the function un(x)  = R d ( x )  is a minimizer of J provided that r 5 nA. This 
condition is optimal: indeed, functional J is not even bounded from below if 
r > nA. Let us define the sequence of functions in W:)'(R) 

A straightforward computation shows that, for k > R,  

where wn is the n-dimensional Lebesgue measure of the unit ball of Rn, A is a 
constant independent of k, and $(p) = pn+l - ( n  + l)Apn. Since $J is strictly 
increasing for p > nA, and r > nA, we have that $(nA) - $(r) < 0, hence 
lim J ( u k )  = -x .  

k - + x  
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ON WARM STARTS FOR INTERIOR METHODS 

A. ~orsgren '  
'Optimization and Systems The05  Department of Mathematics, Royal Institute of Technology, 
SE-IOU 44 Stockholm, Sweden, andersf@kth.se* 

Abstract An appealing feature of interior methods for linear programming is that the num- 
ber of iterations required to solve a problem tends to be relatively insensitive 
to the choice of initial point. This feature has the drawback that it is difficult 
to design interior methods that efficiently utilize information from an optimal 
solution to a "nearby" problem. We discuss this feature in the context of general 
nonlinear programming and specialize to linear programming. We demonstrate 
that warm start for a particular nonlinear programming problem, given a near- 
optimal solution for a "nearby" problem, is closely related to an SQP method 
applied to an equality-constrained problem. These results are further refined for 
the case of linear programming. 

keywords: nonlinear programming, linear programming, interior method, 
warm start. 

1. Introduction 
This paper concerns the solution of a nonlinear program in the form 

minimize f (x) 
XEW 

subject to c(x) 2 0, 

where f : Rn + R and c : Rn -+ Rm are twice-continuously differentiable. 
Our interest is the situation where we want to solve (1) given the solution to 
a "nearby" problem. This situation is commonly referred to as warm start. It 
may for example be the case that one is interested in resolving the problem 
when only some constraints have been changed. Our discussion specifically 
concerns interior methods. We will study properties of the search directions 
generated for the nonlinear programming case, and then specialize further to 
linear programming. For related discussions concerning linear programming, 
see, e.g. Jansen et al. [I I], Kim, Park and Park [12], Gondzio and Grothey [9], 
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Yildirim and Todd [18, 191, Yildirim and Wright [20], Gonzalez-Lima, Wei 
and Wolkowicz [lo]. For extensions to linear sernidefinite programming, see 
Yildirim [17]. 

2. Background 
Methods for solving ( I )  all have to solve a combinatorial problem of identi- 

fying the constraints that are active at the solution. This can roughly be done 
in two ways: (i) by a "hard" estimate of the active constraints at each iteration 
or by (ii) a "soft" estimate. Our focus is interior methods, which belong to 
the latter class. However, in the discussion, sequential quadratic programming 
methods, which belong to the former type of methods, arise too. In this section, 
we review basic properties of these methods, and also give a brief review of 
optimality conditions. 

2.1 Optimality conditions 
Given a suitable constraint qualijcation, an optimal solution x to (I) ,  to- 

gether with a Lagrange multiplier vector X E X m ,  has to satisfy thefirst-order 
necessary optimality conditions associated with (1). These conditions may be 
written in the form 

where g(x) = V f (x), A(x) = ct(x) and e is an m-dimensional vector of 
ones. Here, and throughout the paper, we denote by upper-case letters Y and 
S, the diagonal matrices formed by y and s respectively. In (2)-(4) we have 
introduced the slack variables s associated with the constraints c(x) > 0. They 
need not be present, since s may be eliminated from (3). They do not affect the 
discussion, but simplify the notation. The analogous discussion could be made 
without introducing s. A constraint qualification ensures that a linearization of 
the constraints around a point of interest gives a suitable approximation to the 
constraints. We will throughout the paper assume that a constraint qualifica- 
tion holds at all points which we consider. For a more detailed discussion of 
constraint qualifications in the context of interior methods, see, e.g., Forsgren, 
Gill and Wright [6, Section 2.21. 

Second-order optimality conditions typically involve the Hessian of the La- 
grangian L(x, y) with respect to x, where L(x, y) = f (x) - yTc(x). We 
denote this Hessian by H(x, y), i.e., 
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Given a suitable constraint qualification, the curvature of the objective function 
on the surface of the active constraints is captured by the curvature of H ( x ,  y) 
on the tangent surface of the active constraints. For further discussion, see, e.g., 
Forsgren, Gill and Wright [6, Section 2.21. 

2.2 Interior methods 
The interior methods of interest to this paper are based on approximately 

following the barrier trajectory. This trajectory is defined as the set of solutions 
to the perturbed optimality conditions 

s ( x )  - A ( X ) ~ Y  = 0, 
c(x) - s = 0, 

YSe = pe,  

where y > 0 and s > 0 are held implicitly. Here, p is a positive parameter, 
referred to as the barrier parameter. As in (2)-(4) , we have introduced slack 
variables s. This slack reformulation is not of importance for the discussion, 
but convenient for the notation. 

A primal-dual interior method computes approximate solution to (5)-(7) for 
decreasing values of p by Newton's method. This means that the steps Ax, A s  
and Ay are computed from the linear equation 

Equivalently, we may eliminate A s  and solve 

Note that there is no loss in sparsity when forming (9) from (8), since Y is 
diagonal. Local convexity is typically deduced by the inertia of the matrix of 
(9). If the inertia is such that the matrix has n positive eigenvalues and m 
negative eigenvalues, the equations are solved. Otherwise, some modification 
is made. The solution of this equation can either be done by factorization 
methods or by iterative methods. See, e.g., Forsgren [4] and Forsgren, Gill and 
Griffin [5] for a discussion of these issues. 

In order to enforce convergence of the method, typically a linesearch strategy, 
a trust-region strategy or a filter strategy may be used. We shall not be concerned 
with the precise method, but focus on the linear equations to be solved. For more 
detailed descriptions on interior methods, see e.g., Forsgren, Gill and Wright [6] 
or Wright [15]. Note that for a solution of (5)-(7) , no constraints are active, 
since p > 0. Hence, the active constraints at the solution are determined 
implicitly as ,LL tends to zero. 



2.3 Sequential quadratic programming methods 

In contrast to an interior method, where one system of linear equations is 
solved at each iteration, a sequential programming method has a subproblem 
which is an inequality-constrained quadratic program on the form 

minimize i p T ~ ( x ,  y)p + g(x)Tp 
p€Rn 

subject to A(x)p _> -c(x). 

If the problem is locally convex, this subproblem is well defined. Otherwise, 
some modification is made. We will assume that local convexity holds in 
our discussion, and not consider the modifications. If p* denotes the optimal 
solution of (10) and y* denotes the corresponding Lagrange multiplier vector, 
then the next iterate for solving (1) is given by x + p*, and the next Lagrange 
multiplier estimate is given by y*. Again, some strategy is required to ensure 
convergence, but the basis of the subproblem is the solution of a quadratic 
program on the form (10). Note that the prediction of the constraints that are 
active at the solution of (1) are given by the constraints active at the solution of 
(10). For a thorough discussion on sequential quadratic programming methods, 
see, e.g., Nocedal and Wright [13, Chapter 181. 

3. Warm starts of interior methods for nonlinear 
programming 

We now return to the issue of solving (I)  by a primal-dual interior method. 
Specifically, we consider the warm-start situation. Assume that the initial point 
is given as a near-optimal solution on the trajectory to a different problem 

minimize f (x) 
x€Rn  

subject to ?(x) 2 0, 

where f and 2 have the same properties as f and c of (1). We denote this point 
by 5. This means that for a small barrier parameter fi, we assume that 5, .5 and 
f i  solve 

where y(5) = ~ f ( 2 )  and A(5) = ?I(?). Throughout the paper, we will 
consider quantities related to matrices that are implicitly dependent on fi. The 
notation O(fi) will be used to denote a quantity that converges to zero at least 
as fast as fi. Analogously, O(fi) denotes a quantity that converges to zero at the 
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same rate as b ,  @ ( I )  denotes a bounded quantity that is bounded away from 
zero as fi -t 0 and Q(l/,G) denotes a quantity whose inverse converges to zero 
at least as fast as ,h. 

From the point given by ( I  I), we want to take a primal-dual interior step 
towards solving (1) for a given barrier parameter p. By (8) and (1 2)-(14), the 
Newton equations take the form 

In order to make a more detailed analysis, we assume that the set {1 ,2 ,  . . . , m )  
can be partitioned into two sets, A and I, according to which constraints of (1 I)  
that are "almost active" at 2 ,  and which constraints that are "not almost active" 
at 5 .  This means that A U I = (1,. . . , m}, where A = {i E { 1 , 2 , .  . . , m )  : 

Ci(5) = @(fi)) and I = {i E { 1 , 2 , .  . . , m }  : E,(5) = @(I)}. This would 
typically be the case in the neighborhood of a local minimizer of ( I )  where 
strict complementarity holds. We will throughout this section let subscript "A" 
denote quantities associated with A, and similarly for I. For example, the matrix 
A(?) is partitioned into AA(5)  and AI(5).  By the above assumption, it follows 
that GI = @(,G), and that SA = @(p). We will also make the assumption that 
AA(5)  has full row rank, and that H ( Z )  fj) is positive definite on the nullspace 
of AA(5) .  With this partition, (15) may be written as 

We may now approximate these equations by ignoring the @ ( b )  terms in the 
matrix, which gives a related system of equations 



where v~ and AyI may be eliminated so as to give the equivalent equations 

From (16)-(19), we may identify u and i j ~  + z~ as the solution and Lagrange 
multipliers of an equality-constrained quadratic program. By our assumptions, 
the difference between Ax, As, Ay, and u, v and z ,  respectively, is O(F) ,  as 
the following lemma states. 

L E M M A  1 Let ?,ij, and 3 satisjj (12)-(14). Assume that ( i )  AA ( 5 )  hasfid1 row 
rank, ( i i)  that H ( 5 , e )  is positive definite on the nullspace of AA(5) ,  (iii) that 
i j I  = O(fi) ,  and ( iv)  that S A  = O(,G). Further, let Ax, As and Ay satisJ(1(15), 
and let u, v and z satisjj (16)-(19). Then, Ax = u + O(fi) ,  As = v + O ( b )  
and Ay = z + O(fi) .  

Proof The quantities u, v and z are solutions of a system of linear equations 
whose matrix is bounded and nonsingular as ,G -, 0, by our assumptions. 
Hence, since Ax, Ay and As satisfy (12)-(14), where the only difference is 
that some O(f i )  elements have been added to the matrix, the result follows. I 

This means that we may use properties of u, v and w to deduce properties of 
our desired quantities Ax, As and Ay, as stated in the following proposition. 

THEOREM 2 Let 5, i j ,  and 3 satish (12)-(14). Assume that ( i )  AA(5)  has 
full row rank, ( i i )  that H ( 5 ,  i j )  is positive definite on the nullspace of AA(5) ,  
(iii) that GI = O(,G), and ( iv)  that S A  = O@). Further, let Ax, As and 
Ay satisfy (15). Then, Ax differs by O(,G) from the optimal solution to the 
equality-constrained quadratic program 

1 T minimize ipT~(lt., ~ ) p  + (g (2)  - ( p  - ,G)AI ( z ) ~ S ~  e) p 
p€Rn (20)  

subject to AA(5)p  = - c A ( ~ )  + ( p  - / 2 ) Y i 1 e ,  
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and V A  + A ~ A  differs by O ( b )  from the associated Lagrange multipliers. 

Proof The optimality conditions for (20) are given by 

T --1  H  ( 2 ,  G)p* + g(2)  - ( p  - @)A1 ( 2 )  SI  e = AA ( z ) ~ x > ,  (2 1) 

A ~ ( 2 ) p *  = -cA ( 2 )  + ( p  - p ) P i l e ,  (22) 

for an optimal solution p* together with a Lagrange multiplier vector X i .  Re- 
arrangement of (21)-(22), taking into account that 2 ,  S and g satisfy (12)-(14), 
gives 

By comparing these conditions with (18), it follows that p* = u and X i  - g A  = 
ZA. Lemma 1 now gives Ax = p* + 0 ( b )  and XI - fjA = AyA + O(,G), as 
required. I 

A consequence of Theorem 2 is that if p  = p, then the step is near-optimal to 
the equality-constrained problem where the active constraint are set as equali- 
ties, as summarized in the following corollary. 

COROLLARY 3 Let 2, Q, and S satisfy (12)-(14). Assume that ( i )  A A ( 2 )  has 
full row rank, ( i i )  that H ( 5 ,  ij) is positive dejnite on the nullspace of AA(2) ,  
(iii) that GI = O ( p ) ,  and (iv) that SA = O(j3). Further, let Ax, As and Ay 
satisfy (15) for p  = p. Then, Ax differs by O ( @ )  from the optimal solution to 
the equality-constrained quadratic program 

minimize i p T ~  ( 2 ,  G)p + g ( 2 ) T p  
peRn 

subject to AA ( 2 ) p  = -cA ( 2 ) ,  

and $A + AYA differs by O ( p )  from the associated Lagrange multipliers. 

Another consequence is that for p  = p,  the step is near-optimal to the 
"appropriate" inequality-constrained quadratic programming problem. 

COROLLARY 4 Let 2, Q, and S satisfy (12)-(14). Assume that ( i )  A A ( 2 )  has 
full row rank, ( i i)  that H ( 2 ,  G) is positive dejnite on the nullspace of AA(2) ,  
(iii) that ijI = O ( p ) ,  and (iv) that S A  = O@). Further, let Ax, As and Ay 
satisfy (15) for p  = p. Then, Ax differs by O ( p )  from the optinzal solution to 
the equality-constrained quadratic program 

minimize i p T ~  ( 2 ,  G)p + g ( ~ ) ~ p  
p m n  

subject to a ( 2  2 - ( 2  i E I:, (23) 
a i ( 2 ) T p - c i ( 2 ) ,  icIA\IAf, 



and $ + fly differ by O(b )  from the associated Lagrange multipliers, where 
I; = {i E A : Qi + ti > 0 ) ,  where z is given by (16)-(19). 

The conclusion is that if p is small, of the order of b, the primal-dual step 
behaves like the sequential quadratic programming step, i.e., for small pertur- 
bations we may expect the step to give a near-optimal solution, but for larger 
perturbations, the step is likely to violate both inactive constraints (that are ig- 
nored) and nonnegativity of the multipliers. In addition, we have not taken into 
account the implicit requirement that y and s have to be maintained positive. 

4. Warm starts of interior methods for linear 
programming 

The above analysis applies also to linear programming. However, linear 
programming is special in the sense that there always exists a strictly comple- 
mentary optimal solution, if an optimal solution exists, and the analysis may be 
specialized further. TG be consistent with the discussion in Section 3, we will 
consider the linear program 

minimize dTx 
xGRn 

subject to Ax 2 b, 

and a near-optimal solution to the related linear program 

minimize aTx 
xEEn 

subject to Ax 2 b. 

An underlying assumption is that the constraint matrix A has full column rank. 
Our analysis is "classical" sensitivity analysis in the sense that the constraint 
matrix A is assumed fixed, whereas the cost coefficients and the right hand sides 
may differ. 

The analysis of the previous section applies. However, here we need not 
make any assumption about nonsingularity of the resulting limiting Newton 
system. Again, we assume that a "small" barrier is given, and that 2,  3 and $ 
solve 

In addition to the assumption on full column rank of A, we make the assumption 
that the barrier trajectory for the perturbed problem (25) is well defined, i.e., 
( (2 ,  s )  : Ax - s = b; s > 0 )  # 0 and {y : ATlJ = E,y > 0 )  # 0. 
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From the initial point given by 2,  S and y, we want to take a primal-dual 
interior step towards solving (1) for a given barrier parameter p. The Newton 
equations may be written as 

If As is eliminated from (29), the resulting equivalent system of equations 
becomes 

where w = ,!?-IF. By further eliminating Ay, we obtain 

From this latter system, we obtain explicit expressions for Ax, Ay and As as 

where Z is a matrix whose columns form a basis for Note that (37) 
is obtained from (36) from the relations 

A special property of linear programming is that the elements of 6 can be 
split into "large" and "small" elements, denoted by A and I in consistency with 
the analysis of Section 3, as stated in the following lemma. 



L E M M A  5 Assume that {(x, s )  : Ax - s = 6, s  > 0) # 0 and {y : ATg = 

E ,  y > 0) # 0. Let 2, 9 and 5 satish (26)-(28). Then, we may partition 
(1, . . . , m )  = A U I, with A n I = 8, such that 

where Gi = gi/Si, i = 1,.  . . , m. 

Proof See, e.g., Wright [16, Lemma 5.131. 1 

We may get a further description of Ax,  A s  and Ay by utilizing the follow- 
ing result, which essentially states that we may obtain (ATwA)- 'ATw as a 
convex combination of solutions obtained from nonsingular n x n submatrices 
of A. 

THEOREM 6 ( D I K I N  [2])  Let A be an m x n matrix offull column rank, let 
g be a vector of dimension m, and let D be a positive dejinite diagonal m x m 
matrix. Then, 

( A ~ D A - A ~ D ~  = ( 
det ( D j )  det ( A J ) ~  

A J ' ~ J ,  
JEJ(A) C K ~ J ( . A )  d e t ( D ~ )  d e t ( A ~ ) '  

where J(A) is the collection of sets of row indices associated with nonsingular 
n x n submatrices of A. 

Proof See, e.g., Ben-Tal and Teboulle [ I ,  Corollary 2.11. 1 

Note that an implication of Theorem 6 is that 1 )  (AT W A)-' AT w 1 1  is bounded 
when varies over the set of positive definite and diagonal matrices. For fur- 
ther discussions on this issue, see, e.g., Forsgren [3] and Forsgren and Sporre [7]. 

In order to give the results on the search directions, we first need a result 
on the behavior of (ATwA)- ' (2-  d).  As in the previous section, we will let 
subscript "A" denote quantities associated with A, and similarly for I. 

LEMMA 7 It holds that \ / (ATwA)- ' (2-  d) / /  = O(b)  i j d -  d E range(Az) 
and 1 1  (ATWA)-'(d - d) / /  = R( l / f i )  otherwise. 

Proof First assume that d - d E range(A2). Then, d -  d = Azu  for some 21. 

We then get 
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where IA is the diagonal matrix with ones in diagonals corresponding to A 
and zeros in diagonals corresponding to I.  Taking norms in (40), taking into 
account that 1 1  w-lIAll = lII?/A1 11, gives 

Theorem6gives I I ( A ~ w A ) - ~ A ~ w ~ ~  = 0 ( 1 ) ,  Lemma5 shows that 1 1  r?/ i l / I  = 

0 ( p )  and u is a fixed vector. Consequently, (41) gives I J  (ATwA)- l  (2- d )  / /  = 
0 ( p )  , as required. 

Now assume that d - d $! range(A;). Then, Z Z ( ~  - d )  # 0, where 
ZA is a matrix whose columns form a basis for the null space of AA. Let 
fi = (ATwA)- ' (2  - d), i.e., 6 solves 

Premultiplication of (42) by 2; gives 

T T -  zAAI  WIA16 = z , T ( ~  - d ) ,  

and consequently 

Lemma 5 shows that I I Z Z A T W ~ A ~  / I  = O(fi). Since ZZ(d- d )  # 0, it follows 
from (43) that lj6ll = R( l / f i ) ,  as required. I 

Analogously, a result on the behavior of W ( I  - A ( A ~ w A ) - ~ A ~ w )  ( b  - 6 )  
is needed. 

L E M M A  8 It holds that / ~ w ( I  - A ( A ~ w A ) - ~ A ~ w ) ( ~  - b ) / /  = O(p) if 
bA - bA E range(AA) and ~ I w ( I  - A ( A ~ w A ) - ~ A ~ w ) ( ~  - b)/ l  = R ( l / p )  
otherwise. 

Proof First assume that bA - G A  E range(AA). Then, b - b = Au + r for 
some u and r with rA = 0. We then get 

Talung norms in (44) gives 



Theorem 6 gives I /  I - W A ( A ~ W A ) - ' A T  1 1  = O(1). Note that since r~ = 0, 
we obtain i/wrI/ = /ir?/lrI/l. Lemma 5 shows that = 0 ( b )  and r is a 
fixed vector. Consequently, (45) gives / /  W ( I  - A(AT W A ) - ' A ~ W ) ( ~ -  b )  / /  = 
0 ( p )  , as required. 

Now assume that bA - bA $ range(AA). Then, null(A;) # 8, and there 
is an orthonormal matrix ZA whose columns form a basis for null(A;). Since 
bA - bA $ range(AA), it holds that ZZ(bA - & A )  # 0. Moreover, there is an 
orthonormal matrix Z whose columns form a basis for null(AT) of the form 

where Z1 and Z2 are suitably dimensioned, possibly empty. It follows from 
(39) that 

Consequently, 

Let y = (.ZTT,i/-'Z)-'ZT ( b  - 6 ) .  Then ZT W - ' Z y  =: ZT ( b  - Ib), or equiv- 
alently 

The first block of equations implies that 

Consequently, 

By assumption, //Z:(bA - 6 ~ )  1 1  # 0. Lemma 5 shows that 1 1  WT' 1 1  = 0 ( p ) ,  
and Z is a fixed matrix. Consequently, (46) gives 

as required. 
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The following proposition now gives a characterization of Ax. Note that 
Ax is unbounded if d - d $ range(Az). 

THEOREM 9 Zfd - d E range(AZ), then 

Otherwise, Ax = Q(l/fi) 

Proof This is a consequence of Lemma 7 in conjunction with (35). 1 

Analogously, the following proposition now gives a characterization of Ay. 
Note that Ay is unbounded if - bA $! range(AA). 

Otherwise, Ay = R(l/fi).  

Proof This is a consequence of Lemma 8 in conjunction with (37). 1 

Finally, for the case of primal and dual nondegeneracy, it follows that both 
primal and dual steps are bounded. 

COROLLARY 11 If AA is square and nonsingulal; then 

Proof If AA is square and nonsingular, Theorem 6 in conjunction with Lemma 5 
gives 

( A ~ W A ) - ' A ~ W A = A ~ ~ + O ( , G )  and I I ( A ~ w A ) - ' I I = ~ ( , ~ ~ ) .  (47) 

Consequently, 1 1  ( A ~ W A ) - ~ A T W ~ Y ; ~  / j  = O(fi). The result for Ax now 
follows by using (47) in Theorem 9. The result for As  follows from Ax. 



Analogously, we may let 

for which 

( z ~ w - ~ z ) - ~ z ~ w ~ ~  = I + O(II,) and I I ( z ~ w - ~ z ) - ~ J I  = O(,,G). 
(48) 

Consequently, I / ( z ~ w - ~ z ) - ~ z ~ ~ ~ ~ / /  = O(,,G). The result for Ay now fol- 
lows by using (47) and (48) in Theorem 10. 1 

Corollary 11 gives the result from the nonlinear programming case, special- 
ized to linear programming, since the limiting Newton equations are nonsingular 
in this situation. 

4.1 Example linear programming problem 

Consider the example linear programming problem where A, b and d are 
given by 

- - 
Then, 2 = (0 D ) ~ ,  y = (0 ,,G l)T and S = (1 I ) ~ .  Hence, 6 = s - ' Y ~  = 
(,,G II ,  1 1 1 ) ~ .  Accordingly, 

We may use Theorem 6 to express 

In this example AA = (0 1) .  Since AA has full row rank, a combination of 
Theorem 10 and (49) gives 
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However, since AA does not have full column rank, Theorem 9 shows that Ax 
is R(l/fi) unless dl = Zl. For dl = dl, a combination of Theorem 9 and (49) 
gives 

For large-scale problems, the explicit representations from this small problem 
are naturally not available, but we have included the example to give a feeling 
of what Theorems 9 and 10 say. 

5. Summary 
We have characterized search directions that would arise in warm starts for 

interior methods, first for the general nonlinear programming case, and then 
more specialized results for the linear programming case. The difficulties in 
warm starts for interior methods are emphasized by these characterizations, 
since the directions are similar to directions what would arise in a sequential- 
quadratic-programming method applied to the active constraints only. 

The results are related to "false convergence" of interior methods on non- 
convex problems in that the iterates are close to the boundary of the inequal- 
ity constraints, but not well centered with respect to the trajectory. See e.g., 
Wachter and Biegler 1141 or Forsgren and Sporre [8], for further discussions 
on false convergence. 
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Abstract A new active set algorithm (ASA) for large-scale box constrained optimization is 
introduced. The algorithm consists of a nonmonotone gradient projection step, 
an unconstrained optimization step, and a set of rules for switching between 
the two steps. Numerical experiments and comparisons are presented using box 
constrained problems in the CUTEr and MINPACK test problem libraries. 

keywords: Nonmonotone gradient projection, box constrained optimiza- 
tion, active set algorithm, ASA, cyclic BB method, CBB, conjugate gradient 
method, CGDESCENT, degenerate optimization 

1. Introduction 
We present a new active set algorithm for solving the box constrained opti- 

mization problem 
min{ f (x )  : x ~ t 3 } ,  (1) 

where f is a real-valued, continuously differentiable function defined on the 
box 

~ = { x ~ R ~ : l ~ x ~ u ) .  (2) 

Here 1 < u ;  possibly, li = -m or ui = oo. The following notation is used 
throughout the paper: / /  . / /  is the Euclidean norm of a vector, the subscript 
k is used for the iteration number, while zi,i stands for the i-th component of 
the iterate xi,. The gradient V f (x)  is a row vector while g(x) = v f ( x ) ~  
is a column vector and denotes transpose. The gradient at the iterate xi, is 
gi, = g(xk) ,  the Hessian of f at x is V2 f (x), and the ball with center x and 
radius p is B,(x). 
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Gradient Projection Method (NGPA) 

Unconstrained Optimization Algorithm (UA) 

Figure I. Structure of ASA. 

The problem (1) may result from the discretization of a variational inequality 
such as the obstacle problem [42,49]: 

min ~~~~u(x)11~+2f(x)z~(x)dx 

subject to u(x) 2 $(x) a.e. 

It may come from the discretization of a control problem such as 

min f (x, u) 

subject to x = Ax + Bu, x(0) = xo, u > 0 a.e., 

where A and B are operators and the dot denotes time derivative. It also 
appears as the subproblem in augmented Lagrangian or penalty methods [18, 
4, 26, 27, 30, 32,471. For example, in an augmented Lagrangian approach to 
the nonlinear optimization 

min f (x) subject to h(x) = 0, x 2 0, 

we might solve the box constrained subproblem 

min f (x) + ~ ~ h ( x )  + pllh(x) 1 1 2  subject to x > 0, 

where p is the penalty parameter and X is an approximation to a Lagrange mul- 
tiplier for the equality constraint. Thus efficient algorithms for large-scale box 
constrained optimization problems are important, both in theory and practice. 

2. Gradient projection methods 
Our active set algorithm (ASA) has two phases as indicated in Figure 1 

a gradient projection phase and an unconstrained optimization phase. For the 
unconstrained optimization phase, we exploit the box structure of the constraints 
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Figure 2. The gradient projection step 

in (I) ,  while the gradient projection phase can be applied to any problem with a 
closed, convex feasible set. Hence, in this section, we consider a more general 
problem in which the box B is replaced by a nonempty, closed convex set R: 

min { f ( x )  : x E R) 

Let P denote the projection onto R. The gradient projection step at iteration 
k is depicted in Figure 2. Starting from the current iterate x k ,  we take a positive 
step E k  along the negative gradient arriving at 5ik = x k  - & g k .  If 5ik is outside 
R, then we apply the projection P to obtain a point P(xk )  on the boundary of 
R. The search direction d l ,  is along the line segment [xk,  P ( % k ) ] .  The new 
iterate x k + l  is obtained by a line search along the search direction. 

A more precise statement of the gradient projection algorithm follows: 

Nonmonotone Gradient Projection Algorithm (NGPA) 

Initialize k = 0, xo = starting guess, and f T l  = f (xo)  

While /lP(xk - g k )  - x k / /  > E 

1. Choose ~ i ,  E [amin, a,,,] and set d k  = P ( x k  - E k g k )  - x k .  

2. Choose f i  SO that f ( x k )  I fi I m a ~ { f i - ~ ,  frax) and fi;' L: frax infinitely often. 



3. 

4. 

5. 

End 

Let f~ be either f i  or min{fpax, fi). If f (xk + dk) < f R  + 
bgLdk, then ar, = 1. 

If f (xk + dk) > f~ + 6g;dk, then ar, = 17j where j > 0 is the 
smallest integer such that 

f (xk + $dk) I f~ + rljkjrdk. (4) 

Set xk+l = xk + akdk and k = k + 1. 

The statement of NGPA involves the following parameters: 

E E [O, m) - convergence tolerance ( P ( x k  - g k )  = x k  if and only if xk 
is a stationary point) 

[ a t n i n ,  am,,] C (0, m) - bound on the stepsize in Step I 

fknax - max{f (xk-,) : 0 5 i < min(k, A4 - 1)) (local maximum 
of function values near xk, M > 0) 

6, rl E (O,1) - parameters entering the Armijo line search in Step 4 

In Step 2, the requirement that " f i  5 fFaX infinitely often" is needed for global 
convergence. This is a rather weak condition which can be satisfied by many 
strategies. For example, every L iteration, we could simply set fi = fpax. 
Another strategy, closer in spirit to the one used in the numerical experiments, is 
to choose a decrease parameter A > 0 and an integer L > 0 and set f i  = fpax 
if 

f ( X L - L )  - f (xk) 5 

Thus we set f i  = frax when the function values decrease "too slowly." 
For our numerical experiments, the initial step air, in Step 1 is generated by 

a cyclic Barzilai-Borwein method developed in [20]. The traditional Barzilai 
and Borwein stepsize [3] is 

where sr, = xk+l- xk and yk = gk+l- gr,. If the same BB stepsize is repeated 
for several iterations, then even faster convergence can be achieved (see [20]). 
These schemes in which the same BB stepsize are repeated for several iterations 
are called cyclic BB schemes (CBB). The CBB update formula is 
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where m is the cycle length, and k is a multiple of m. The cycle length can be 
chosen in a adaptive way, as explained in [20]. 

Our line search along the search direction dk is an Arrnijo type line search 
[I], which may be viewed as a relaxed version of the Grippo, Lampariello, 
and Lucidi nonmonotone line search [34] (denoted GLL). For NGPA, the GLL 
scheme corresponds to fi = fraX for each k .  In practice, we have obtained 
faster convergence results by allowing the reference function value f{ to decay 
more slowly on average than fFax. 

Our statement of the gradient projection algorithm employs a direction op- 
erator da(x) given by 

where a is a scalar. Some properties of da are summarized below (see [37] for 
further details concerning these properties and other results presented in this 
paper): 

PROPOSITION 1 P and da have the following properties: 

PI. IjP(x) - P(y) / (  < /jx - y / /  for all x and y E Rn. 

P2. For any x E Q and cr > 0, da (x) = 0 if and only if x is a stationary 
point for (3). 

P3. Suppose x* is a stationary point for (3). If for some x E P, there exist 
positive scalars X and y such that 

P4. Suppose that f is twice-continuously differentiable near a stationary 
point x* of ( 1 )  satisfying the strong second-order suficient optimality 
condition; that is, there exists y > 0 such that 

for all d E %n with the property that di = 0 when xi = 0 and gi (x*) > 0. 
Then there exists p > 0 with the following property: 



whenever x  E Bp(x*) ,  where X is any Lipschitz constant for Vf on 

BP (x* ). 

In P3 we assume a convexity/monotonicity type condition at x;  for any x 
which satisfies ( 6 )  and the Lipschitz condition (7), we can estimate the error 
in x in accordance with (8). In P4, we make a convexity type assumption at 
x* (the strong second-order sufficient optimality condition), and we have the 
error estimate (10) in a neighborhood of x*. Based on P3 and P4, the Lipschitz 
continuity of dl (.) implied by PI,  and the fact P2 that dl ( x )  = 0 if and only if 
x is a stationary point, the function d l ( x )  can be used to measure the error in 
any iterate xk. In particular the convergence condition 1 1  P ( xk  - gk)  - xk 1 1  f E 

in NGPA is equivalent to ((dl  ( x k )  ( 1  6. 

Sufficient conditions for the global convergence of NGPA are given below. 

THEOREM 1 Let C be the level set defined by 

Assume the following conditions hold: 

GI. f is bounded from below on C and dm,, = supklldk/I < co. 

G2. If2 is the collection of x  E R whose distance to C is at most d,,,, then 
V f is Lipschitz continuous on 2. 

Then NGPA with E = 0 either terminates in a finite number of iterations at a 
stationary point, or we have 

lim inf I(dl(xk)  I /  = 0.  
k + w  

When f is a strongly convex function, Theorem 1 can be strengthened as 
follows: 

COROLLARY 2 Suppose f is strongly convex and twice continuously differen- 
tiable on R, and there is a positive integer L with the property that for each k ,  
there exists j E [ k ,  k + L) such that fr < f max. Then the iterates xk of NGPA 

3 . 7  2 
with E = 0 converge to the global minlmzzer x*. 

3. Active Set Algorithm 
In this section, we focus on the active set algorithm. Unlike the gradient 

projection algorithm where the feasible set can be any closed, convex set, we 
now restrict ourselves to box constraints. Moreover, to simplify the discussion, 
we consider (without loss of generality) the special case 1 = 0 and u = a. In 
other words, the constraint is x > 0. 
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Although the gradient projection scheme NGPA has an attractive global con- 
vergence theory, the convergence rate can be slow in a neighborhood of a local 
minimizer. We accelerate the convergence by exploiting a superlinearly conver- 
gent algorithm for unconstrained minimization. For the numerical experiments, 
we utilize the conjugate gradient code CGDESCENT [35, 38, 36, 391 for the 
unconstrained algorithm (UA). In general, any UA satisfying the following 
conditions can be employed: 

Unconstrained Algorithm (UA) Requirements 

U2. A(xk) C A(xlc+l) for each k where A ( x )  = {i E [ I ,  n] : xi = 0 )  

U3. If xji > 0 for j > k, then lim inf (g i (x j )  / = 0. 
3 2 k  

U4. Whenever the unconstrained algorithmis started, compute xk+l = P(xk  - 
a k g I ( x k ) ) ,  where ak is obtained from a Wolfe line search. That is, ak 
is chosen to satisfy 

where $(a)  = f (P (xk  - a g I ( x k ) ) ) ,  0 < b < a < 1, and g ~ ( x )  is the 
part of the gradient associated with inactive constraints: 

Conditions U1-U3 are sufficient for global convergence, while U1-U4 are 
sufficient for the local convergence results summarized below. U4 could be 
replaced by another descent condition for the initial line search, however, the 
local analysis in [37] has been carried out under U4. 

The active set algorithm is based on a set of rules which determine when we 
switch between NGPA and UA. These rules correspond to the double arrows in 
Figure 1. Before presenting the switching rules, we give some motivation. A 
fundamental set embedded in our switching rules is the "undecided index set" 
U : 

where a  E ( 0 , l )  and p E ( 1 , 2 )  are fixed constants. In the numerical experi- 
ments, we take a  = 112 and P = 312. Observe that at a local minimizer x*, 
the only components of the gradient which do not vanish are associated with 
components of x* at the boundary of the feasible set. The undecided index set 



consists of indices of large gradient components with large x components (in 
the sense of (12)). 

We show [37] that if f is twice continuously differentiable, then for any 
algorithm converging to a stationary point where each iterate is generated by 
either NGPA or a UA satisfying Ul-U4, the s e tU(xk )  is empty for k sufficiently 
large. This result does not depend on the rules used to switch between NGPA 
and UA. When U ( x k )  becomes empty while performing NGPA, we feel that 
the strictly active constraints at a stationary point are almost identified and we 
may switch to UA to exploit its faster convergence. 

Another quantity which enters into our switching rules is the ratio between 
the norm of the inactive gradient components / I g I ( x )  1 1  and the error estimator 
/Id1 ( x )  1 1 .  By U3, g I ( x k )  tends to zero as iterates are generated by the UA. By 
U2, UA does not free constraints; hence, any limit, say y*, of iterates typically 
does not solve the original problem (1). In other words, d l  (y*) may not be 0.  
We stop the UA and switch to the NGPA when IlgI(xk)ll is sufficiently small 
relative to ! l d l ( x k )  1 1 .  More precisely, we introduce a parameter p  > 0 and we 
branch from UA to NGPA when 

Unlike UA where bound components are fixed by U2, NGPA allows bound 
components of x k  to move into the interior of the feasible set. Hence, by 
switching from UA to NGPA, the iterates are able to move to a new face of the 
feasible set. In NGPA we may decrease p, in which case the accuracy with 
which we solve subproblems in UA increases. 

Assuming f is twice continuously differentiable, we show in [37] that for 
a local minimizer x* satisfying the strong second-order sufficient optimality 
condition (9) and for any sequence of iterates generated by either NGPA or a 
UA satisfying U1-U4, there exists a scalar p* > 0 such that 

for k sufficiently large. As a result, when p becomes sufficiently small, condi- 
tion (13) is never satisfied; hence, if the switch from UA to NGPA is dictated 
by (13), we conclude that the iterates will never leave the UA. In other words, 
we eventually solve (1) using the unconstrained optimization algorithm. 

With these insights, we now state ASA, or equivalently, we give the switching 
rules: 

Active Set Algorithm (ASA) 

1. While j / d l ( x k )  1 1  > 6 execute NGPA and check the following: 

a. If U ( x k )  = 8, then 
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If l lg~(~k) l l  < ~ / / d ' ( ~ k ) / / ,  then P = PP. 
Otherwise, goto Step 2. 

b. Else if A(xk) = A(xkP1) = . . . = A ( X ~ - ~ ~ ) ,  then 

If 1(g1 (xk) I /  > pjldl (xk) 1 1 ,  then goto Step 2. 

End 

2. While / /d l (xk)  1 1  > E execute UA and check the following: 

a. If IlgI(xk)/l < p/ld1(xk)1/, then restart NGPA (Step 1). 

b. If (A(xk-l) I < IA(xk) 1, then 

If U(xk) = 0 or lA(xk) I > I A ( X ~ - ~ )  / + nn, restart UA at xk. 
Else restart NGPA. 

End 

End 

In addition to the convergence tolerance E introduced previously, ASA utilizes 
the following four parameters: 

/. (031) - / / g l  ( x k )  1 1  < p/ldl (xk) / I  implies the UA subproblem solved 
with sufficient accuracy 

P E (O,1) - decay factor used to decrease p in NGPA 
nl,  nz E [I, n) - integers connected with active set repetitions or change 

A strong convergence theory can be developed for this algorithm. The fol- 
lowing global convergence property holds: 

THEOREM 3 Let C be the level set defined by 

Assume the following conditions hold: 

A l ,  f is bounded from below on L and dm,, = supr, lIdi, 1 1  < m. 

A2. Ifz is the collection of x E t3 whose distance to L is at most dm,,, then 
V f is Lipschitz continuous on 2. 

Then ASA with E = 0 either terminates in a finite number of iterations at a 
stationary point, or we have 

liminf l/d1(xic)ll = 0. 
lc-00 



For strongly convex objective functions, the global convergence result can 
be strengthened as follows. 

THEOREM 4 Iff is strongly convex and twice continuously differentiable on 
a, and assumptions A2 and A3 of Theorem 3 are satisfied, then the iterates xk 
of ASA with E = 0 converge to the global minimum. 

Under the hypotheses of the following theorem, ASA eventually reduces to 
the unconstrained algorithm with a fixed active constraint set. In other words, 
the constrained problem is eventually solved by the unconstrained algorithm. 

THEOREM 5 I f f  is twice-continuously differentiable and the iterates xk gen- 
erated by ASA with E = 0 converge to a stationary point satisfying the strong 
second-order suficient optimality condition, then after a finite number of iter- 
ations, ASA performs only the UA without restarts. 

When f is a strongly convex quadratic function, the iterates xk converge 
to the global minimizer x* by Theorem 4. Thus, if the UA is based on the 
conjugate gradient method, it follows from Theorem 5 that ASA converges in 
a finite number of iterations, since the conjugate gradient method has finite 
convergence when applied to a convex quadratic. 

In our analysis, summarized above, we never claim that the active indices at a 
stationary point x* can be identified in a finite number of iterations. In fact, there 
is a fundamental difference between the gradient projection algorithm presented 
in this paper, and algorithms based on a "piecewise projected gradient" [11- 
131. For our gradient projection algorithm, we perform a single projection, 
and then we back track towards the starting point. We are unable to show 
that the active constraints are identified in a finite number of iterations. In 
the piecewise projected gradient approach, where a series of projections may 
be performed, the active constraints can be identified in a finite number of 
iterations. Even though we do not identify the active constraints, we show in 
[37] that the components of xk corresponding to the strictly active constraints are 
on the order of llxk - x*1I2. Moreover, in our experience, the single-projection 
approach is more efficient in practice. 

4. Numerical Experiments 
In this section, we compare the CPU time performance of ASA to the per- 

formance of other algorithms for box constrained optimization. We begin with 
a brief overview of algorithm development for box constrained optimization. 

One important line of research focused on the development of conjugate gra- 
dient methods for box constrained problems with a quadratic objective function. 
Polyak's 1969 seminal work [50] considers a convex, quadratic cost function. 
The conjugate gradient method is used to explore a face of the feasible set, and 
the negative gradient is used to leave a face. Since Polyak's algorithm only 
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added or dropped one constraint in each iteration, Dembo and Tulowitzki pro- 
posed [21] an algorithm CGP which could add and drop many constraints in an 
iteration. Later, Yang and Tolle [55] further developed this algorithm so as to 
obtain finite termination, even when the problem was degenerate at a local rnin- 
imizer x*. That is, for some i, 25 = 0 and g,(x*) = 0. Another variation of the 
CGP algorithm, for which there is a rigorous convergence theory, is developed 
by Wright [53]. MorC and Toraldo [49] point out that when the CGP scheme 
starts far from the solution, many iterations may be required to identify a suit- 
able worlung face. Hence, they propose using the gradient projection method to 
identify a worlung face, followed by the conjugate gradient method to explore 
the face. Their algorithm, called GPCG, has finite termination for nondegener- 
ate quadratic problems. Recently, adaptive conjugate gradient algorithms have 
been developed by DostQl et nl. [24, 25, 271 which have finite termination for 
a strictly convex quadratic cost function, even when the problem is degenerate. 

For general nonlinear functions, some of the earlier research [4, 14, 33, 44, 
481 focused on gradient projection methods. To accelerate the convergence, 
more recent research has developed Newton and trust region methods. In [I ,  13, 
18,291 superlinear and quadratic convergence is established for nondegenerate 
problems, while [31, 32,43,46] establish analogous convergence results, even 
for degenerate problems. Although computing a Newton step can be expen- 
sive computationally, approximation techniques, such as a sparse, incomplete 
Cholesky factorization [45], could be used to reduce the computational expense. 
Nonetheless, for large-dimensional problems or for problems where the initial 
guess is far from the solution, the Newtonltrust region approach can be inef- 
ficient. In cases where the Newton step is unacceptable, a gradient projection 
step is preferred. 

The affine-scaling interior point method of Coleman and Li [ lo ,  15-17] is 
a different approach to (I), related to the trust region algorithm. More re- 
cent research on this strategy includes [22, 40, 41, 52, 561. These methods 
are based on a reformulation of the necessary optimality conditions obtained 
by multiplication with a scaling matrix. The resulting system is often solved 
by Newton-type methods. Without assuming strict complementarity (i. e. for 
degenerate problems), the affine-scaling interior-point method converges su- 
perlinearly or quadratically, for a suitable choice of the scaling matrix, when 
the strong second-order sufficient optimality condition [51] holds. When the 
dimension is large, forming and solving the system of equations at each itera- 
tion can be time consuming, unless the problem has special structure. Recently, 
Zhang [56] proposes an interior-point gradient approach for solving the system 
at each iteration. Convergence results for other interior-point methods applied 
to more general constrained optimization appear in [28, 541. 

We compare the performance of ASA to the following four codes: 



Figure 3. Performance profiles, 50 CUTEr test problems (left), 42 sparsest CUTEr problems, 
23 MINPACK-2 problems (right) 

rn L-BFGS-B [57]: The limited memory quasi-Newton method of Zhu, 
Byrd, Nocedal (ACM Algorithm 778). 

SPG2 Version 2.1 [7, 81: The nonmonotone spectral projected gradient 
method of Birgin, Martinez, and Raydan (ACM Algorithm 813). 

rn GENCAN 161: The monotone active set method with spectral projected 
gradients developed by Birgin and Martinez. 

rn TRON Version 1.2 1461: A Newton trust region method with incomplete 
Cholesky preconditioning developed by Lin and MorC. 

These codes are all carefully written, high quality codes that reflect the different 
approaches to box constrained optimization summarized above. All codes are 
written in Fortran and compiled with f77 (default compiler settings) on a Sun 
workstation. The stopping condition was 

where I /  . 11, denotes the sup-norm of a vector. In running any of these codes, 
default values were used for all parameters. Our test problem set consisted 
of all 50 box constrained problems in the CUTEr library [9] with dimensions 
between 50 and 15,625, and all 23 box constrained problems in the MINPACK- 
2 library [2] with dimension 2500. The performance of the algorithms, relative 
to CPU time, was evaluated using the performance profiles of Dolan and MorC 
1231. That is, for each method, we plot the fraction P of problems for which the 
method is within a factor r of the best time. 

TRON is somewhat different from the other codes since it employs Hessian 
information and an incomplete Cholesky preconditioner, while the other codes 
only utilize gradient information. In Figure 3, left, we compare the performance 
of the four gradient based codes ASA, L-BFGS-B, SPG2, and GENCAN using 
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Figure 4. Performance comparison for P-ASA and ASA, E = (left), for E = 
l ~ - ~ l / d ~ ( x ~ ) / l ~  (right) 

the 50 CUTEr test problems. In a performance profile, the top curve corresponds 
to the method which solved the largest fraction of problems in a time witbin a 
factor r of the best time. According to Figure 3, left, ASA achieves better CPU 
time performance than the other methods for this test set. 

In order to compare ASA to the Hessian-based code TRON, we incorporated 
preconditioning in the conjugate gradient iteration. The preconditioner was the 
inverse of the incomplete Cholesky factorization of the Hessian at the current 
iterate. That is, we extracted the incomplete Cholesky factorization from TRON 
and used it in our code; hence, the two codes were using precisely the same 
approximation to the Hessian at each iterate. We let P-ASA denote this pre- 
conditioned version of ASA. Since TRON is targeted to large-sparse problems, 
such as the MINPACK problems, we compare P-ASA to TRON using the 23 
MINPACK-2 problems and the 42 sparsest CUTEr problems (the number of 
nonzeros in the Hessian at most 115 the total number of entries in the Hessian). 
In Figure 3, right, we see that P-ASA has better CPU time performance than 
TRON in this test set. 

In Figure 4, left, we compare the performance of P-ASA to that of ASA using 
the 42 sparsest CUTEr problems and the 23 MINPACK-2 problems. Clearly, 
the preconditioning was effective for this problem set and the convergence 
tolerance E = In Figure 4, right, the convergence tolerance is relaxed 
to E = /Id1 (xo) /Im. With this relaxed convergence tolerance, there is not 
much difference between the preconditioned and the unconditioned codes. 
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Abstract The paper describes and analyzes an application of the p-regularity theory to 
nonregular, (irregular, degenerate) nonlinear optimization problems. The p- 
regularity theory, also known as the factor-analysis of nonlinear mappings, has 
been developing successfully for the last twenty years. The p-factor-approach is 
based on  the construction of a p-factor-operator, which allows us to describe and 
analyze nonlinear problems in the degenerate case. 

First, we illustrate how to use the p-factor-approach to solve degenerate op- 
timization problems with equality constraints, in which the Lagrange multiplier 
associated with the objective function might be equal to zero. We then present 
necessary and sufficient optimality conditions for a degenerate optimization prob- 
lem with inequality constraints. The p-factor-approach is also used for solving 
mathematical programs with equilibrium constraints (MPECs). We show that 
the constraints are 2-regular at the solution of the MPEC. This property allows 
us to localize the minimizer independently of the objective function. The same 
idea is applied to some other nonregular nonlinear programming problems and 
allows us to reduce these problems to a regular system of equations without an 
objective function. 

keywords: Lagrange optimality conditions, degeneracy, p-regularity 

1. Introduction 
The main goal of this paper is to describe and analyze an application of thep- 

regularity theory to nonregular, (irregulal; degenerate) nonlinear optimization 
problems. In the first part of the paper, we recall some definitions of the p- 
regularity theory [2,3]. In the second part, we illustrate how to use the p-factor- 
approach to solve degenerate optimization problems with equality constraints, 
in which the Lagrange multiplier associated with the objective function might 
be equal to zero. In the third part, we present necessary and sufficient optimality 
conditions for a degenerate optimization problem with inequality constraints. In 
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the last part of the paper we consider mathematical programs with equilibrium 
constraints (MPECs). 

Notation. Let C(X,  Y)  be the space of all continuous linear operators from 
X to Y and for a given linear operator A : X --+ Y, we denote its image by 
ImA = {y E Y / y = Ax for some x E X). Also, A* : Y* + X *  denotes the 
adjoint of A, where X *  and Y* denote the dual spaces of X and Y,  respectively. 
Let p be a natural number and let B : X x X x . . . x X (with p copies of X )  --+ 

Y be a continuous symmetric p-multilinear mapping. The p-form associated to 
B is the map B[.]p : X + Y defined by B[x]p = B ( x ,  x ,  . . . , x) ,  for x E X. 

If F : X -+ Y is a differentiable mapping, its derivative at a point x E X 
will be denoted by F f ( x )  : X + Y. If F : X + Y is of class CP, we let 
F (p )  (x)  be the pth derivative of F at the point x (a symmetric multilinear map 
of p copies of X to Y) and the associated p-form, also called the pth-order 
mapping, is F (p )  (x) [h]p = F(P)  (x)  (h ,  h ,  . . . , h) . 

2. The p-factor-operator and the p-regular mappings 

In this section, we recall some definitions of the p-regularity theory [2, 31. 
Consider a sufficiently smooth mapping F from a Banach space X to a 

Banach space Y.  The mapping F is called regular at some point Z E X if 

We are interested in the case when the mapping F is nonregular (irregulal; 
degenerate) at 2, i.e., when 

We recall the definition of the p-regular mapping and of the p-factor-operator. 
We construct a p-factor-operator under an assumption that the space Y is de- 
composed into a direct sum 

where Yl = cl Irn Ff (Z) ,  Y ,  = cl Sp (lrnpzz ~ ( ~ ' ( 3 )  [.li), i = 2, . . . , p - 1, 
YP = Zp, Zi is a closed complementary subspace for (Yl 8 . . . $ Y,-l)  with 
respect to Y, i = 2, . . . , p ,  and Pzz : Y + Zi is the projection operator onto 
Zi along (Yl $ . . . $ Y,-1) with respect to Y, i = 2, . . . , p. 

Define the mappings [2] 

where Pyj : Y Y is the projection operator onto Y ,  along (Yl $ . . .8 K-1 $ 

Y,+l $ . . . 83 Yp) with respect to Y, i = 1, . . . : p. 



The p-factor-operator plays the central role in the p-regularity theory. The 
number p is chosen as the minimum number for which (2) holds. We give the 
following definition of the p-factor-operator. 

DEFINITION 1 The linear operator Q p ( h )  E C ( X ,  Yl @ . . . @ Yp), defined by 

P p ( h )  = f ;  ( 2 )  + f l ( 2 )  [h] + . . . + f$') (3) [hip-l, h  E X ,  

is called a p-factor-operator of the mapping F ( x )  at the point 2. 

Now we are ready to introduce another very important definition in the p- 
regularity theory. 

DEFINITION 2 We say that the mapping F is p-regular at 5 along an element 
h if ImQp(h) = Y .  

The following definition is a specific form of Definition 1 for the case of 
p = 2 a n d F : R n - + R n .  

DEFINITION 3 A linear operator Q 2 ( h )  : Rn -+ R n ,  

is said to be the 2-factor-operator, where P' is a matrix of the orthoprojector 
onto ( I m  F' (z))' ,  which is an orthogonal complementary subspace to the 
image of the first derivative of F  evaluated at 2. 

The next definition is a specific form of Definition 2. 

DEFINITION 4 The mapping F is called 2-regular at Z along an element h  i f  

3. Degenerate optimization problems with equality 
constraints 

In this section, we consider the nonlinear optimization problem with equality 
constraints: 

minimize f ( x )  subject t o  F  ( x )  = 0 ,  
X E X  

(4) 

where f : X -+ R. We will denote a local solution of (4) by 2: We assume that 
F, f are Cp'l in some neighborhood of 3 and that the mapping F : X -. Y is 
nonregular at 2,  i.e., the condition (1) holds. 

The Lagrangian for problem (4) is defined as 



where (Ao, A) E ( R  x Y*)\{O) is a generalized Lagrange multiplier. 
The classical first-order Euler-Lagrange necessary optimality conditions for 

problem (4) state that there exists a generalized Lagrange multiplier ( X o ,  X )  
such that 

X o  f ' ( 2 )  + ( F 1 ( 2 ) ) *  X = 0 ,  
F ( I )  = 0 ,  
A; + 11x112 = 1. 

In other words, the point ( I ,  X o ,  X )  is a solution of the following system of 
equations: 

We are interested in the case, when the Lagrange multiplier X o  might be equal to 
zero. In this case, the mapping C  and the system (6) are degenerate at ( Z , O ,  X). 
However, if the mapping L: isp-regular at ( I ,  0 ,  X )  with respect to some vector h ,  
then solving system (6) can be reduced to solving a regular system of equations. 
This result is stated in the following Theorem 5 .  

Before we give the theorem, introduce the notation z  = ( x ,  X o ,  A) and the 
functions l i ( z )  associated with the mapping C ( z )  introduced in (6). We define 
functions l i  ( z )  by ( 3 )  with f i  ( x )  = l i ( z )  and F ( x )  = C ( z ) .  We also define 
a, (h)  to be a p-factor-operator of the mapping L ( z )  at the point 2 = ( I ,  0 ,  1). 

THEOREM 5 Let I be a solution of (4) and let (0 ,  X )  be a generalized Lugrange 
multiplier such that (3,O, X) is a solution of (6). Assume that the mapping C ( z ) ,  
defined in (6) is p-regular at the point 2 = (I ,O,  A )  with respect to some vector 
h. Assume also that ~ e r a , ( h )  = ( 0 ) .  Then the following system has a locally 
unique regular solution 2: 

E ( z )  = 11 ( z )  + a;(.) [h] + . . . + ~ ? - ~ ) [ h ] ~ - ~  = 0. (7 )  

Example. Consider the problem 

3 minimize y  subject t o  F ( x ,  y )  = x2 - y  = 0: 
(GY) 

(8) 

This problem has a solution (3,  jj)T = ( 0 ,  o ) ~  and F'(0,O) = (0,O). The 
Lagrangian for (8) is defined as 

L ( x ,  y, X o .  A) = Aoy + ( x 2  - y3)X 



Then the system (6) for problem (8) has the form 

This system has a unique degenerate solution (Z,Q,  X o ,  X) = ( 0 , 0 , 0 , 1 ) .  
Since C ( x ,  y ,  Ao, A )  is 3-regular at (O,0, 0 ,  l)T with respect to the vector 

h = ( 0 , 1 , 0 ,  o ) ~ ,  we get by Theorem 5 that the system (7) is defined as 

This system has a locally unique regular solution (0 ,  0,O, I)~. 

4. Optimality conditions for degenerate optimization 
problems 

In this section, we consider the nonlinear optimization problem with inequal- 
ity constraints 

minimize f ( x )  subject t o  g ( x )  = (gl ( x ) ,  . . . : g , ( ~ ) ) ~  2 0 ,  (9) 
X E X  

where f, gi : X + R' and X is a Banach space. We will denote a local solution 
of (9) by 2. 

For some p 2 2, we say that we have the completely degenerate case if 

Introduce the sets 

Hp(2)  = { h  E X 1 gi ( P I ( % )  [hIp > 0 ,  i E I ( %  

I p  ( 2 ,  h )  = { i  E 1 ( 2 )  I gi ( P )  ( E )  [hIp = 0 ,  h  E Hp ( ? ) I ,  
and 

Ha = { h  E H,(z) / l g i (p ) (2 )  [hIpl 5 a ,  i E I ( % ) ;  llhll = 1) .  

Introduce the definition. 



DEFINITION 6 A mapping g ( x )  is called strongly p-regular at 5  ifthere exists 
cr > 0  such that sup lI{Qp(h)}-'ll < m. 

h~ H, 

Let fix some element h  E X and introduce the p-factor-Lagrangefiinction 

PI: 
m 

L p ( x ,  h ,  X(h))  = f (z) - x & ( h )  g,(P-i) ( x )  [h jppl .  (12) 
i=l 

THEOREM 7 Let 3 be a local solution to problem (9). Assume that there 
exists a vector h, llhli = 1, h  E Hp(5) ,  such that the vectors { g i  ( P I ( % )  [hlp-l, 
i E Ip (Z ,  h ) )  are linearly independent. Then there exist Lagrange multipliers 
X i  ( h )  such that 

g  (3) > 0 X i  ( h )  > 0 ,  X i  ( h )  ( 2 )  = 0 i = 1, . . . , m. 

Furthermore, suppose that the mapping g ( x )  is strongly p-regular at 3. If 
there exist w > 0  and X(h) such that 

for all h E H p ( I ) ,  then 3 is an isolated solution to problem (9). 

5.  Mathematical programs with equilibrium constraints 
(MPECs) 

The MPEC considered in this section is a mathematical program with non- 
linear complementary problem (NCP) constraints: 

minimize f ( x )  subject t o  g ( x )  2 0 ,  x  2 0 ,  ( g ( x ) ,  x )  = 0 ,  (14) 

where f : Rn -t R, g : Rn i Rn are twice continuously differentiable func- 
tions. We are interested in the case when the strict complementarity condition 
does not hold at the solution 5 ,  i.e., when there exists at least one index j such 
that gj (3 )  = 0  and 3, = 0. 

We show that under a certain condition, the problem (14) can be reduced to 
solving a system of nonlinear equations, which is independent of the objective 
function. 



By introducing the slack variables sj and $ ,  we reduce (14) to the problem 
with only equality constraints in the form: 

System (15) is a system of the 3n equations in the 3n unknowns x, s, and y .  
The corresponding Jacobian is given by 

where e l ,  . . . , en denotes the standard basis in Rn. If there exists an index j 
such that yj = 0 and sj = 0 (the strict complementarity condition does not 
hold), then the Jacobian matrix (16) is singular. 

Assume that we can identify the set lo of the weakly active constraint indices, 
that is, I. = {i = l l .  . . , n  1 gi(2) = 0 and li = 0). There are different 
techniques to identify the set lo, for example, ones described in [ l ]  or in [4]. 

Define the vector h = ( h l ,  . . . h,) as 

and a vector h E R~~ as hT = (0:: hT ,  hT) .  
From the explicit form of the Jacobian (16), the orthoprojector P' onto 

(Irn F ( z ,  s, y ) ) l  in R3n is a diagonal matrix pL = diag(pj);zl that is con- 
stant in some neighborhood of (2 ,  S ,  y)  and that is given by 

1 ,  i = 2 n + j ,  a n d j E I o  
P, = 0, otherwise. 
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Construct the mapping 

I I Q(x, s, y) = F(x, s:  y) + P F (x, s: y)h. 
Without loss of generality, we assume that I. = (1,. . . , r). Then 

The Jacobian of (17) is nonsingular at (I, 5, y) .  Consequently the system (17) 
has a locally unique regular solution (I, 5. y). Thus, we have reduced the 
solution of the problem (14) to solving system (17) that is independent of the 
objective function f (x). 
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NON MONOTONE ALGORITHMS FOR 
UNCONSTRAINED MINIMIZATION: 
UPPER BOUNDS ON FUNCTION VALUES 
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Abstract Non monotone algorithms allow a possible increase of function values at certain 
iterations. This paper gives a suitable control on this increase to preserve the 
convergence properties of its monotone counterpart. A new efficient MultiLineal 
Search is also proposed for minimization algorithms. 

keywords: Non Monotone, Lineal Search, Trust Region. 

1. Introduction 
This paper is concerned with algorithms for solving the unconstrained mini- 

mization problem of finding a local minimizer 5 and the local minimum value 
f = f ( 5 )  of a scalar function f (.) E C 1  : S c Rn + R. Armijo's inequality 
(1) has been frequently used by monotone algorithms: given xi, di E En, the 
algorithm must determine a stepsize X i  so that the new iterate xi+l gives a 
sufficient decrease in the function value, 

Under suitable assumptions (Al -A4 below) a (sub)sequence fulfill- 
ing (1) converges to a point Z satisfying the first order necessary optimality 
condition; namely Vf ( 5 )  = O [14]. Additional conditions, mainly in the 
choice of {di)y, are obviously required to ensure a superlinear rate of con- 
vergence. Monotone algorithms force strict decrease of function values, i.e., 
f (x i+l)  < f (xi). This stringent condition may impair the convergence of the 
algorithm. Although the asymptotic rate of convergence is preserved, narrow 
valleys may demand an excessive number of function evaluations, which is 
normally considered a poor performance index when comparing optimization 
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algorithms. Non monotone algorithms (NMAs) climb on the surrounding hills; 
i.e., f (x i+l )  > f ( x i ) ,  and may avoid this undesirable behavior. Moreover, it 
has been shown that NMAs may jump over local minima [20] and become more 
fitted to global optimization [4]. 

A well known non monotone line search strategy was proposed by De Gripo 
et a1 [8, Section 31. An iterate xi+l = xi + Aidi is accepted if 

This strategy has been adopted by many researchers in constrained and un- 
constrained problems with success. Currently many monotone algorithms have 
a non monotone counterpart [6]. The reader may consult additional material in 
[8, 9, 12, 16, 17, 19, 211 and references therein. 

This paper adapts a sufficient decrease condition that does not require the 
computation of derivatives [5, 151. Therefore, it can be used in derivative-free 
optimization and gradient-related algorithms. Furthermore, line search is not 
mandatory and can be replaced by trust region or some other technique. Finally, 
the maximum f (.) value on the previous q iterations is replaced by an upper 
bound pi 2 f ( x i ) ,  which essentially has to be decreased a certain number of 
iterations (assumption A5 below). An iterate xi+l is accepted if 

where $(.) : R +  -+ R + ;  lim +(r) /r  = 0. Note that a monotone algorithm 
710 

is recovered when pi = f ( x i )  for all i, and the algorithm will behave as 
explained before; on the other hand, if the function upper bound pi is very 
loose, the algorithm would trend to stay more often on the hills, which implies 
extra function evaluations. 

Next section describes and proves formally the convergence of our non 
monotone algorithm. It also includes a new approach that we call MultiLine 
Search (MLS). Section 3 gathers implementation remarks and report prelimi- 
nary results to compare the monotone version with its non monotone counter- 
part. 

Our notation is standard with minor peculiarities: all vectors are in the Euclid- 
ean space Rn, unless otherwise stated. R$ are vectors in R* with non negative 
components; xTy  is the usual inner product C2=l zkyk ,  and M = xyT is an 
n x n matrix with elements mij = x iy j .  Lower case Greek letters are real 
values, capital Latin letters I ;  J, K are subsets of iteration indices. An infinite 
sequence is denoted as { ( . ) i ) Y ,  and a subsequence by { ( . ) i ) i G J .  The notation 
{ ( . ) i ) i G l  5 a means that all elements in the subsequence are real numbers not 



Non monotone: upper bounds 

Table I .  Non Monotone Algorithm (NMA) 

Input: p < l i y , ~ > O  
i = 0, Choose X I ,  7 1  

DO i = i + l  
Update pi 
Choose di : 0  < /Idi 1 1  .< 7;: 

IF f (x i  + di) 5 Pi - $(Ti)  

xi+l = xi + di 
0 < ~ i + l  I ~/ ld i j I  

E L S E  

constants 
Initial values 
next iteration 
satisfying A5 

move 
1 1 d  1 1 may expand 

no move 
line search, trust region 

bigger than a. Throughout the paper the set Di = {dil ,  . . . , d,,) is a set of m 
unit vectors in Rn. The set T D  =- { ~ d  : d  E D ) .  

2. Non monotone algorithms 

Our aim is to propose a non monotone algorithm that generates a converging 
subsequence {x i ) iEJ  + 2 ,  V f ( 2 )  = 0 under suitable conditions. Table 1 de- 
scribes the algorithm as close as possible to a gradient related method, including 
the usual stopping criterium 1 lV f (x)11 < E .  This version tries to satisfy ( 3 )  for 
xi+l = xi + di. Table 2 describes a more practical version where ( 3 )  is tested 
on multiple search directions. Theorem 4 below proves that with a slight modi- 
fication and some usual extra assumptions on f (.) the non monotone algorithm 
exhibits a superlinear rate of convergence. We now list the assumptions and 
prove convergence. 

A l :  f (.) is bounded below, and { x . ~ ) ?  remains in a compact set, 

A2: f (.) is FrCchet differentiable, that is, V f (.) : Rn -+ Rn is everywhere 
defined and f ( x  + d )  = f ( x )  + v f ( ~ ) ~ d  + o(1 Id1 1 )  for all x ,  d  E Rn. 

AS: Let J be the index set of s~iccessfiil iterations. The sequence of reference 
values {pi )?  



a) is an upper bound, f  ( x i )  < p i ,  and 

b) decreases sufficiently every "q" successful iterations, i.e., 

1. V ( i  E J ) l ( j  E J ,  i < j )  : cpj  < cpi - @(l ld i l l ) ,  where 
a(.) : lR+ -+ lR+, and for any index subset K 
[{@( l ld i1 I ) ) i€K O] * [ { l / d i l l ) i ~ ~  -' 01. 

2. Between i and j there are at most "q" successful iterations. 

Assumptions A1-A4 are required by most algorithms that solve smooth prob- 
lems. A5 is easy to comply. The sequence {cp,)? may remain constant except 
at those iterations where it is forced to decrease. It is easy to show that (2) is a 
special case. We now prove that the non monotone algorithm is well defined; 
specifically we have 

L E M M A  1 I f f  ( x j )  > cpi - + ( I  Idi / 1 )  for all i 2 j ,  then V f  ( x j )  = 0. 

Proof: As I ldi+l 1 1  = pl Idi 1 1  we have that {I Idi 1 I)? -3 0.  Besides, for all 
i > j we have that f  ( x j  + d i )  > qi - $ ( I  idi 11); therefore 

V f ( x j l T d i  = f ( x j  + d i )  - f ( x j )  -o ( I Id i I i )  
> cpi - f ( x d  - +(l ldi l l )  - ~ ( I l d i l l )  
2 -0( l ld i I l )  - +(l ldi l l )  

Coupling this inequality with A3 we assert for i E I that 

Since 1 ldi 1 1  -, 0 we deduce that 11Vf ( ~ j )  1 1  = 0 I 

Proof: If the number of successful iterations is finite then by construction 
/ ldi+l I I = pl Idi 1 1  for all i large enough and the lemma is valid. 

If, on the contrary, the number of successful iterations is infinite, let K be 
the index set where the upper bound actually decreases. For any two consec- 
utive indices i ,  j E K we have that f ( x j )  < p j  _< yi - @(l ld i l l ) ;  hence 
{ @ ( I  Idi 1 l ) ) i E K  - 0, otherwise { p i ) i E K  would be unbounded below, which in 
turn forces { f  ( x i ) ) i E K  to be unbounded below contradicting A l .  By A4 we 
deduce that { l ld i l l ) iEK -+ 0; but for any j  @ K; lldjll < y q / l d i l l ,  for some 
i E K. Therefore, we conclude that i d i }?  --+ O m  

As a direct consequence of the previous lemma we can state 

REMARK 3 I f @ ( / l d l j )  = +(j ldl l )  = 0.01 d T d ,  the convergence of a descent 
method that satisfies Al-A4 is ensured, provided / ldi+l I / < y 1 Idi / / at all suc- 
cessful iterations. 
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We now establish the superlinear rate of convergence along the lines given 
in [14, theorem 4.1 A]. 

THEOREM 4 ( S U P E R L I N E A R  RATE)  Assume that for all i large enough: 
The Hessian V 2  f  ( x i )  is uniformly positive definite and B id i  = - V f  ( x i ) ,  
where Bi E lRnxn is a uniformly positive matrix that satisfies the necessary 
condition for superlinear rate of convergence I / (v2 f  ( x i )  - B i ) d i  / / = o(I Idi 1). 

The proposed Non monotone algorithm exhibits a superlinear rate of con- 
vergence if lim 4(i jrl l ) / r 2  = 0. 

TLO 

Proof: We assume that the proof is asymptotic: it happens for all i large 
enough. From lemma 2 we obtain that { d i ) y  -+ 0 and by the assumptions in 
the theorem we also obtain that { V f ( x i ) ) y  -t 0. The algorithm exhibits a 
superlinear rate of convergence if and only if f  ( x i  + d i )  I vi - 4(I Idi 1 1 )  [31. 
Let vi = (V2 f  ( x i )  - B i ) d i .  Note that 

vTdi  = o ( d T d i )  and d T V f ( x i )  = - d T ~ ~ d ~  = vTd i  - d Y V 2  f  ( x i ) d i ;  
therefore 

f  ( x i  + d i )  = f  ( x i )  + d T V f  ( x i )  + ; d T v 2  f  ( x i ) d i  + ~ ( d ' d i )  
= f ( x i )  - ; d T V 2  f  ( x i ) d i  + vTd i  + o(d?di)  

i 1 d T v 2  f  ( x i ) d i  vTd i  + ~ ( d T d i )  
= f  ( x i )  + dTdi -- + 

2 d'di d?di i 
Let X > 0 be a lower bound of the minimum eigenvalue of { V 2  f  ( x i ) )  for 

all i large enough. When 1 Idi 1 1  is small enough we obtain 
(lvTdil + lo (dTdi )  l ) / dTd i  < :A; 

hence, f  ( x i  + d i )  I f ( x i )  - $d?di I pi  - d ( l l d i ( ( ) a  

2.1 Line Search(LS), MultiLine Search(MLS), 
Trust Region(TR) 

A straightforward implementation of the NMA is by line search (LS); that 
is: i f f  ( x i  + d i )  I cpi - 4( l id i l l ) ,  it generates xi+l = x i  + di as its monotone 
counterpart; otherwise, it simply defines di+l = pdi and proceeds with the next 
iteration. The Trust Region (TR) approach is a natural extension of LS. It tries 
to satisfy (3) on a ball of radios ri around x i .  This technique has attracted a lot 
of interest in the optimization community [ I ,  2, 131. Essentially TR replaces 

w 

the true function f  ( x i  + d i )  by a model f  ( x i ,  d )  and finds 

di = arg min f  ( x i ;  d )  . 
l l 4 l l ~ z  

X i + l  = x i  + di is accepted if (3) holds; otherwise, it is rejected. The T value 
?., 

is adjusted depending upon the proximity of the model value f ( x i ,  d i )  to the 
true value f  ( x i  + d i ) .  There are various issues that TR must face, mainly 



Table 2. Multiple Linesearch NonMonotone Algorithm 

(MLSNMA) 

PSEUDOCODE REMARKS 
T = 2; E = 6: x E Rn Remark 7 
f z  = f (z), cp = m a x ( f z / 2 ,  2 f z )  + 10 
success= 0 
DO Generate d Remark 8 

I F  lldll > 5 0 0 6  min(0.01, T )  

Contract d : i ldli = 5 0 0 6  min(0.01, T )  

ELSEIF (I ldj l  < rn in (10-~ ,  T )  T )  Remark 9 
Expand d : \ (d l  1 = rnin(10T4, T )  T 

7- = l ldll Keep lldll 
Generate D = { d l ,  . . . : d,) Remark 10 
k = 0;  done= FALSE 

WHILE (NOT DONE) AND (k 5 n) 
LINESEARCH ( dk )  Remark 11 
k = k + l  Next direction 

IF (NOT DONE) x is blocked 
7- = 0 . 2 ~  

UNTIL ( T  < E )  Remark 12 

a To define an appropriate model, and 
a to solve subproblem 4 

Current research offers several options that greatly affect the TR perfor- 
mance. See [I,  11, 181 and references therein to be aware of the difficulties en- 
countered in TR methods. We propose here another technique, which is, compu- 
tationally, between LS and TR. Instead of solving subproblem (4), we carry out 
a multiline search (MLS). Specifically, given the iterate xi E IRn, pi 2 f ( x i ) ,  
a set of m unit directions Di = {d i l ,  . . . , dim) and a parameter ri > 0, we 
declare that xi is blocked if 

where 4 ( . )  : IR+ -+ IR+ and lirnTLo d(r) / r  = 0. To try to unblock xi 
the algorithm imposes a reduction on the norm of the next search directions; 
namely diil E ~ T ~ D ~ + ~ ,  p  < 1. The iteration will be considered successful 
if xi+l = xi + d  satisfies ( 3 )  for some d  E q D i .  It is obvious that under 
assumption A6 below the algorithm ensures convergence. 

A6: Di = i d i l ,  . . . , dim) is afinite set of m unit directions and 3d E Di that 
satisfies A3. 
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This assumption cannot be verified on some practical problems, where no 
derivative information is at hand; however the following theorem is very useful 
when Di positively spans R n ,  that is, 

V ( x  E IRn)3(a1 > 0 , .  . . , a ,  > 0 )  : x = aldil + . . .  + amdim. 

THEOREM 5 If { D i ) y  -) D = {dl  , . . . , dm) positively span R n ,  and f (.) 
is strictly differentiable at limit points of {xi)?, then 

Proof: These are known facts. The proof can be found in [4, 51 
Based on the previous theorem, we propose the following MLS strategy: 

Generate di, let ri = / Idi/ 1 ,  and generate a set Di of unit directions that satisfies 
A6, with (d i / r i )  E Di. If ( 3 )  holds for xi+l = xi + d, for some d E riDi the 
iteration has been successful and we proceed with the next iteration; otherwise, 
we declare that xi is blocked and go to the next iteration forcing I ldi+l 1 1  = pri. 
We now outline the convergence proof of the algorithm described in table 2 and 
remark 11, which contains this MLS strategy. 

THEOREM 6 Let f (.) be strictly differentiable. Under assumptions Al,A2, 
A4,A5,A6 the algorithm shown in table 2 generates a subsequence that 
converges to a point 3 satisfying a necessary optimality condition. 

Proof: If the number of blocked points is infinite we use theorem 5, or lemma 
1; otherwise, we use lemma 2 

3. Implementation and numerical results 
This section shows up a number of remarks that complement the description 

of the algorithm given in table 2. 

REMARK 7 The starting point x, the stopping value E ,  r ,  p, and the number 
of iterations q where p is constant may be input parameters. 

REMARK 8 d may be randomly generated when no derivative information is 
available. Depending upon the amount of information at hand d could even be 
the Newton direction. 



REMARK 9 This safeguard prevents a premature stop due for instance to sin- 
gularities when d = - BV f ( x ) .  

REMARK 10 The choice of D seems to have a tremendous impact on the 
performance of derivative free optimization algorithms [5]. When derivative 
information is available we suggest the orthogonal directions 
dk = - s i gn (uk )  (el, - 2uku) ,  where u = -V f ( x i ) / l  JV f ( x i )  1 1 ,  ek is the 
k - t h  column of the identity matrix, and s i g n ( a )  = 1 i f a  2 0 ,  s i g n ( a )  = 0 
otherwise. Note that d l u  = !uk  1 > 0, k = 1 ; . . . , n; hence we assert that 
3d E D : dTu 2 1 1 6 ,  n because otherwise 

a contradiction. 

REMARK 11 This procedure assumes !dl 1 = 1 and evaluates f ( x  + rd ) .  It 
returns T R U E  if the iteration is successful. It also updates x and 9. We use the 
updating on cp suggested above. 

LINESEARCH (d) 
z = x + r d ;  f, = f ( z )  
done= F A L S E  

I F  (f, < p - r rn in(10-~ ,  7')) 

x = z ;  fx = fi Accept z 
success= success+ 1 
IF (success= q) 

cp = f,; success = 0 Update cp 
done= T R U E  

end of linesearch 

REMARK 12 We have chosen this termination criterium because it is also 
valid for derivative free optimization. 

We carried out preliminary numerical tests with functions from the MorC, 
Garbow and Hillstrom collection. The MatLab code was taken from [lo] 
and run on a Pentium 4 desk computer. We used the quasi Newton direction 
d = - s ign(V f ( X ) ~ B V  f ( X ) ) B V  f ( x ) ,  and B was updated with the symmet- 
ricformulaB = B+(s-B~)(s-B~)~/(s-B~)~~, wheres = X i + l - X i > P  = 

B f - V f ( x i ) .  Table 3 shows the number of function evaluations needed 
for functions S I N G X ,  R O S E N X ,  which have an adjustable number of variables. 
For q E { 1 , 5 , 1 0 , 2 0 )  it was observed that the algorithm's performance gen- 
erally improves for q > 1. It was also observed in tests not reported here that 
LS was superior to MLS on the steepest descent method. These results are by 
no way conclusive, and a more complete numerical test must be carried out in 
future research. 
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Table 3. # of Function evaluations 

I singx I I rosenx 
cp constant (q) p constant (q) 

variables / 1 5 10 20 / ( 1 5 10 20 
8 / 321 283 159 154 / / 533 362 343 343 
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NETWORKS 
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University of the Basque Country, Department ofApplied Mathematics, Statistics and Opera- 

tions Research, Spain, eugenio.mijnngos@ehu.es 

Abstract The efficiency of the network flow techniques can be exploited in the solution of 
nonlinearly constrained network flow problems by means of approximate sub- 
gradient methods. In particular, we consider the case where the side constraints 
(non-network constraints) are convex. We propose to solve the dual problem 
by using &-subgradient methods given that the dual function is estimated by 
minimizing approximately a Lagrangian function with only network constraints. 
Such Lagrangian function includes the side constraints. In order to evaluate the 
efficiency of these E-subgradient methods some of them have been implemented 
and their performance computationally compared with that of other well-known 
codes. The results are encouraging. 

keywords: Nonlinear Programming, Approximate Subgradient Methods, 
Network Flows. 

1. Introduction 
Consider the nonlinearly constrained network flow problem (NCNFP) 

minimize f (x) 

subject to x E 3 

c(x) < 0; 
where: 

m The set 3 is 

where A is a node-arc incidence m x n-matrix, b is the productiodde- 
mand m-vector, x are the flows on the arcs of the network represented 
by A, and Z are the capacity bounds imposed on the flows of each arc. 

Please use the following format when citing this chapter: 
Author(s) [insert Last name, First-name initial(s)]. 2006. in IFIP International Federation for Inform- 
ation Processing, Volume 199, System Modeling and Optimization, e d ~ .  Ceragioli F., Dontchev A,; 
Furuta H.. Marti K., Pandolfi L., (Boston: Springer). pp. [insert page numbers]. 



The side constraints (3) are defined by c  : Rn -+ RT, such that c  = 
[q, . . . , c,It, where c i (x )  is linear or nonlinear and twice continuously 
differentiable on the feasible set 3 for all i = 1, . . . , r.  

rn f : Rn -+ R is nonlinear and twice continuously differentiable on 3. 

Many nonlinear network flow problems (in addition to the balance constraints 
on the nodes and the capacity constraints on the arc flows) have nonlinear side 
constraints. These are termed nonlinearly constrained network flow problems, 
NCNFP. In recent works [ l l ,  121, NCNFP has been solved using partial aug- 
mented Lagrangian methods with quadratic penalty function and superlinear- 
order multiplier estimates (ALM). 

In this work we focus on the primal problem NCNFP and its dual problem 

maximize q(p) = min l ( x ,  p )  = min { f ( x )  + ptc(x) )  (4) 
xE? ~ € 3  

subject to: p  E M ;  ( 5 )  

where M = { p  I p  2 0, q(p)  > -m). We assume throughout this paper 
that the constraint set M is closed and convex, and q  is continuous on M, 
and for every p  E M some vector x ( p )  that minimizes l ( x ,  p )  over x  E 3 
can be calculated, yielding a subgradient c ( z ( p ) )  of q  at p. We propose to 
solve NCNFP by using primal-dual methods, see [2]. 

The minimization of the Lagrangian function l(x, p)  over 3 can be 
performed by means of efficient techniques specialized for networks, see [21]. 

Since q(p)  is approximately computed, we consider approximate subgradi- 
ent methods [13] in the solution of this problem. Author's purpose is to improve 
the efficiency obtained by using the multiplier methods with asymptotically ex- 
act minimization [ l  1,121. Moreover, these methods allow us to solve problems 
of the kind of NCNFP where the dual function might be nondifferentiable in 
spite of having a differentiable Lagrangian function, as this could happen if the 
conditions given by the Proposition 6.1.1 in [2] are not fulfilled. The basic 
difference between these methods and the classical subgradient methods is that 
they replace the subgradients with inexact subgradients. 

Different ways of computing the stepsize in the approximate subgradient 
methods have been considered. The diminishing stepsize rule (DSR) suggested 
by Correa and LemarCchal in 141. A dynamically chosen stepsize rule based 
on an estimation of the optimal value of the dual function by means of an ad- 
justment procedure (DSAP) similar to that suggested by NediC and Bertsekas 
in [ la]  for incremental subgradient methods. A dynamically chosen stepsize 
whose estimate of the optimal value of the dual function is based on the re- 
laxation level-control algorithm (DSRLC) designed by Brannlund in [3] and 
analyzed by Goffin and Kiwiel in 191. The convergence of these methods was 
studied in the cited papers for the case of exact subgradients. The convergence 
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of the corresponding approximate (inexact) subgradient methods is analyzed in 
[13], see also [lo]. 

The main aim of this work is to evaluate the efficiency of the approximate 
subgradient methods when we use DSR, DSAP, and DSRLC over NCNFP 
problems, for which we compare it with that of the augmented Lagrangian 
method (ALM) when it uses superlinear-order estimates [ l  1, 121, and with that 
of the well-known codes filterSQP [7] and MINOS [17]. Also, we compare 
the quality of the computed solution by the E-subgradient methods. 

This paper is organized as follows: Section 2 presents the approximate sub- 
gradient methods; Section 3, the solution to the nonlinearly constrained network 
flow problem; and Section 4 puts forward the numerical tests. 

2. Approximate subgradient methods 
When, as happens in this work, for a given p  E M, the dual function value 

q(p)  is calculated by minimizing approximately 1 ( x ,  p) over x  E 3 [see (4)], 
the subgradient obtained, as well as the value of q(p) ,  will involve an error. 

In order to put forward such methods, it is useful to introduce a notion of 
approximate subgradient [2, 201. In particular, given a scalar E 2 0 and a 
vector p with q(p)  > -m, we say that c  is an E-subgradient at p if 

The set of all E-subgradients at p is called the E-subdifferential a t  P and 
is denoted by &q(p).  Note that every subgradient at a given point is also an 
&-subgradient for all E > 0. Generally, however, an &-subgradient need not be 
a subgradient, unless E = 0. 

An approximate subgradient method is defined by 

where ck is an ck-subgradient at pk, [.I+ denotes the projection on the closed 
convex set M, and sk is a positive stepsize. 

In our context, we minimize approximately 1 ( x ,  pk)  over x E 3, thereby 
obtaining a vector xk E 3 with 

1(xk,  pk)  < inf I(,, , L L ~ )  + ~ k .  
~ € 3  

As is shown in [2, 131, the corresponding constraint vector, c ( x k ) ,  is an 
E~-subgradient at pk. If we denote q,, ( p k )  = l ( x k ,  by definition of 
q ( p k )  and using (8) we have 



2.1 Stepsize rules 

Throughout this section, we use the notation 

and I /  . 1 1  denotes the standard Euclidean norm. 
In this work, three kinds of stepsize rules have been considered. 

2.1.1 Diminishing stepsize rule (DSR). The convergence of the subgra- 
dient method using a diminishing stepsize was shown by Correa and LemarCchal, 
see [4]. Next, we consider the special case where ck is an E~-subgradient. 

In a recent work [13], the following proposition is proved. 

PROPOSITION 1  Let the optimal set M* be nonempty. Also, assume that the 
sequences i s k )  and { E ~ )  are such that 

Then, the sequence { , L L ~ ) ,  generated by the E-subgradient method, where ck E 
aEk q ( p k )  (with {lick 11) bounded), converges to some optimal solution. 

An example of such a stepsize is 

for = Lklrn] + 1. In this work we use by default m = 5. 
An interesting alternative for the ordinary subgradient method is the dynamic 

stepsize rule 

with ck E ~ q ( ~ ~ )  and 0  < y  5 yk 7 < 2, which was introduced by Poljak 
in [19] (see also Shor [20])- 

Unfortunately, in most practical problems q* and q ( ~ ~ )  are unknown. 
Then, the latter can be approximated by q,, ( p k )  = 1 ( x k ,  p k )  and q* replaced 
with an estimate qfeV. This leads to the stepsize rule 

where ck E is bounded for k = 0 ' 1 ,  . . .. 
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2.1.2 Dynamic stepsize with adjustment procedure (DSAP). An op- 
tion to estimate q* is to use the adjustment procedure suggested by NediC 
and Bertsekas [18], but fitted for the &-subgradient method, its convergence is 
analyzed by Mijangos in [13], see also [ l o ] .  

In this procedure qkv is the best function value achieved up to the kth 
iteration, in our case maxo<j lk  qEj ( p j ) ,  plus a positive amount 6k, which is 
adjusted according to algorithm's progress. 

The adjustment procedure obtains q k ,  as follows: 

and Sk is updated according to 

where So, 6, 0, and p are fixed positive constants with 0 < 1 and p > 1 

2.1.3 Dynamic stepsize with relaxation-level control (DSRLC). An- 
other choice to compute an estimate q k ,  for (13) is to use a dynamic stepsize 
rule with relaxation-level control, which is based on the algorithm given by 
Brannlund [3],  whose convergence was proved by Goffin and Kiwiel in [9] for 
~k = 0 for all k .  

Mijangos in [13] has fitted this method to the dual problem of NCNFP (4-5) 
for { E ~ }  + 0 and analized its convergence, see also [ l o ] .  

In this case, in contrast to the adjustmentprocedure, q* is estimated by qfe,, 
which is a target level that is updated only if a sufficient ascent is detected or 
when the path long done from the last update exceeds a given upper bound B. 

Step 0 (Initialization): Select pO, So > 0 ,  and B > 0. 

Set go = 0 and q&b = m. 

Set k = 0, 1 = 0 and k(1) = 0, where k(1) will denote the iteration 
k when the lth update of qfev occurs. Then k(1) = k will be set. 

Step 1 (Function evaluation): Compute q,, ( p k )  and ck E dE,q(pk) .  

If qik ( p k )  > q,"zl> set q,k,, = 4Ek ( p k ) .  
Otherwise set qFe, = $ z l .  

Step 2 (Stopping rule): If IlckI1 = 0, terminate with p* = pk.  

Step 3 (Sufficient ascent detection): If q,, ( , L L ~ )  2 $::)+$&, set k ( l t 1 )  = 
k ,  crk = 0,  = S1, 1 := 1 t 1, and go to Step 5. 



Step 4 (Oscillation detection): If crk > B, set k ( l  + 1 )  = k ,  crk = 0 ,  
tjl+l = $h l ,  1 := 1 + 1. 

Step 5 (Iterate update): Set q:,, = q:,(? + hr. Choose y E [y, $1 and 
compute pk+l by means of (7) with the stepsize sk  obtainedby (13). 

Step 6 (Path long update): Set ak+l = ar, + skljckll, k := k + 1,  and go 
to Step 1. 

Note that qFe, keeps the record of the highest value attained by the iterates that 
are generated so far; i.e., qFe, = maxo<j<k - qEj(,uj) .  Moreover, the algorithm 

uses the same target level qfe, = q$ + 61 for k = k ( l ) ,  k(1) + 1 ,  k ( l  + 
2 ) ,  . . . , k ( l  + 1 )  - 1. In [13] we analize the convergence of the c-subgradient 
method with the stepsize (13) for ql,, given by this algorithm. 

3. Solution to NCNFP 
An algorithm is given below for solving NCNFP. This algorithm uses the 

approximate subgradient method described in Section 2. 
The value of the dual function q(,uk) is estimated by minimizing approx- 

imately 1 ( x ,  ,uk) over x E F (the set defined by the network constraints) 
so that the optimality tolerance, r:, becomes more rigorous as k increases; 
i.e., the minimization will be asymptotically exact [I]. In other words, we 
set qEk (,uk) = 1(xk,  p k ) ,  where x k  minimizes approximately the nonlinear 
network subproblem NNSk 

minimize 1 (z, p k )  
X E 3  

in the sense that this minimization stops when we obtain a x k  such that 

where limk,, 74 = 0 and Z represents the reduction matrix whose columns 
form a base of the null subspace of the subspace generated by the rows of the 
matrix of active network constraints of this subproblem, see [16]. Let zk be the 
minimizer of this subproblem approximated by x k .  Then, it can be proved (see 

k k [13]) that there exists a positive w, such that 1 ( x k ,  ,uk) 5 1 (Z , ,u ) + UJT: for 
k = 1 , 2 ,  . . .. If we set ~ i ,  = WT:, this inequality becomes (8). Moreover, as 

,:+I = k , for a fixed a E ( 0 ,  I ) ,  

then C p = l  E I ,  < ca, and so limk,, ~ i ,  = 0. Consequently, we can denote 
qEk = l ( x k ,  ,uk), which holds the inequality (9), and we may use the methods 
described in Section 2. In this work, a = 10-I by default. Note that in this 
case, E I ,  = r k w  = 10-IC-l u. 
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ALGORITHM 2 (APPROXIMATE SUBGRADIENT METHOD FOR NCNFP) 

1 Step 0 Initialize. Set k = 1, N,,,, T,, E ~ ,  and 7,. Set p1 = 0. 

Step 1 Compute the dual function estimate, q,,(pk), by solving NNSk, so 
that if II .Zt~,l(xk, pk)lj 5 rk, then xk E 3 is an approximate solution, 
qEk(pk)  = 1(xk, p k ) ,  and ck = c(xk)  is an E~-subgradient of q in p,k. 

Step 2 Check the stopping rules for 

T I :  Stopif max { ) +  } < :, where (c"+ = rnax(0 ci(xk)).  
i=1 ...., T 1 + (c:)+ 

T4: Stop if k reaches a prefixed value N,,, 

T2: Stop if 

If pk fulfils one of these tests, then it is optimal, and the algorithm stops. 
Without a duality gap, (xk ;  p,k) is a primal-dual solution. 

Step 3 Update the estimate pk by means of the iteration 

qk - (qk-' $ qkp2 + qk-3)/3 
1 + qk 

where sk is computed using some stepsize rule. Go to Step 1 

< E ,  , where qn = 

In Step 0, for the checking of the stopping rules, T, = E ,  = loe5 and 
N,,, = 200 have been taken. In addition, 7: = 10-I by default. 

Step 1 of this algorithm is carried out by the code PFNL, described in 
1141 (downloadable from website http://www.ehu.es/-mepmifeel). 

In Step 2, alternative heuristic tests have been used for practical purposes. TI 
checks the feasibility of xk,  as if it is feasible the duality gap is zero, and then 
(xk )  pk )  is a primal-dual solution for NCNFP. T2 and T3 mean that p does 
not improve for the last N iterations. Note that AT = 4. 

To obtain s k  in Step 3, we have used the iteration (7) with the three rules 
considered in Section 2 for computing the stepsize: 

D Diminishing stepsize rule DSR given by (1 I), which holds (lo), for the ~ i ,  

given above. 



P Dynamic stepsize with adjustment procedure DSAP, using p = 2, P = l /p ,  
yk = 1  for all k ,  60 = 0.05/( (c1)+l l ,  and 6  = l o w 5  11 ( z o ,  ,uo) 1 ,  where z0 
is the initial feasible point for Step 1 and k = 0. 

D Dynamic stepsize with relaxation level-control DSRLC, replacing B in Al- 
gorithm 1 with Bl = max{B: B I 1 )  when an oscillation is detected, for 
B = 1 0 - ~ / 1 x ~  - xOjj and B = 0.01. As can be seen, C r l  Bl = oo. In 
addition,wesetyk = lforall  k , 6  = 1 0 - 5 ~ l ( z o ~ , u o ) ~ , 6 0  = 0 . 5 1 / ( c 1 ) + I I ~  

The values given above have been heuristically chosen. The implementa- 
tion in Fortran-77 of the previous algorithm, termed PFNRNOS, was designed 
to solve large-scale nonlinear network flow problems with nonlinear side con- 
straints. 

4. Numerical tests 
In order to obtain an evaluation of PFNRNO5, some computational tests 

are performed, which consist in solving nonlinear network flow problems with 
nonlinear side constraints using this code and comparing the results with those 
obtained using PFNRN (with ALM), filterSQP and MINOS (see Section 1). 
These last two solvers are available on the NEOS server [5] with AMPL input 
[a]. (See the site h t t p  : //www-neos . mcs . an1 . gov/.) PFNRN is executed 
on a Sun Sparc 10141 work station under UNIX (which has a similar speed to 
that of the NEOS machines). 

Table I .  Test problems. 

problem # arcs # nodes # side const. # actives # sb. arcs 
D12e2 1524 360 180 5 75 
D13e2 1524 360 360 10 89 
D14e2 1524 360 36 3 1 15 1 
D12nl 1524 360 180 22 685 
D13nl 1524 360 360 3 8 68 1 
D14nl 1524 360 36 3 1 596 
D21e2 5420 1200 120 3 30 
D22e2 5420 1200 120 18 45 
D23e2 5420 1200 120 17 238 
D31el 4008 501 5 1 63 
D31e2 4008 501 5 1 60 

The problems used in these tests were created by means of the following 
DIMACS-random-network generators: Rmfgen and Gridgen, see [6]. These 
generators provide linear flow problems in networks without side constraints. 
The inequality nonlinear side constraints for the DIMACS networks were gen- 
erated through the Dirnl random generator described in [14]. The last two 



Nonlinearly constrained networks 

Table 2. Comparison of the computed solution. 

DSR DSAP DSRLC 
Problem e l f *  //c//, elf' l C l i w  
D12e2 lo-4 lo-" 0. lo-" 0. 10-I' 

Table 3. Comparison of the efficiency. 

Problem filterSQP MINOS ALM DSR DSAP DSRLC 
D 12e2 3.3 0.5 1.0 0.3 0.6 0.4 
D13e2 5.0 0.7 2.3 0.6 0.5 0.6 
D 14e2 22.7 - 13.7 4.1 3.3 4.2 
D12nl 409.6 31.1 46.2 48.3 58.3 39.6 
D13nl 560.8 47.9 60.5 73.3 54.0 46.6 
D14nl - - 162.3 330.3 178.3 103.3 
D21e2 38.7 3.7 2.2 1.4 1.4 1.6 
D22e2 63.5 6.8 5.4 2.5 1.9 1.9 
D23e2 112.4 239.3 20.0 5.8 6.2 5.9 
D31el 28.7 45.6 2.0 1.6 1.6 1.6 
D31e2 22.7 14.1 1.3 0.9 1.0 1 .O 

letters indicate the type of objective function that we have used: Namur func- 
tions, n*, and EIOl functions, e*. The EIOl family creates problems with a 
moderate number of superbasic variables (i.e., dimension of the null space) at 
the solution (# sb. arcs). By contrast, the Namur functions [21] generates 
a high number of superbasic arcs at the optimizer, see Table 1. More details 
about these problems can be found in [14, 151. 

In Table 2, e l f  * represents the relative error in the computation of the opti- 
mum value of the objective function, whereas / E / / ,  represents the maximum 
violation of the side constraints in the optimal solution; that is, it offers infor- 
mation about the feasibility of this solution and, hence, about its duality gap. 
The results point out that the quality of the solution computed by PFNRNOS 
when it uses DSR is lower than that obtained when using dynamic stepsizes, 
such as DSAP or DSRLC. 



In Table 3, for each method used to compute the stepsize the efficiency is 
evaluated by means of the run-times in CPU-seconds. The efficiency for the 
three stepsizes is very similar and, for these tests, the subgradient methods 
were more efficient than the quadratic multiplier method, ALM (see Section 
I), filterSQP, and MINOS. Moreover, with default values, filterSQP was more 
accurate than MINOS. 

These results encourage to carry out further experimentation, which also 
includes real problems, and to analyze more carefully the influence of some 
parameters over the performance of this code. 
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Abstract The paper describes a new conjugate gradient algorithm for large scale nonconvex 
problems with box constraints. In order to speed up the convergence the algorithm 
employs a scaling matrix which transforms the space of original variables into 
the space in which Hessian matrices of functionals describing the problems have 
more clustered eigenvalues. This is done efficiently by applying limited memory 
BFGS updating matrices. Once the scaling matrix is calculated, the next few 
iterations of the conjugate gradient algorithms are performed in the transformed 
space. The box constraints are treated by the projection as previously used in [R. 
Pytlak, The efficient algorithm for large-scale problems with simple bounds on the 
variables, SIAM J. on Optimization, Vol. 8, 532-560, 19981. We believe that the 
preconditioned conjugate gradient algorithm gives more flexibility in achieving 
balance between the computing time and the number of function evaluations in 
comparison to a limited memory BFGS algorithm. The numerical results show 
that the proposed method is competitive to L-BFGS-B procedure. 

keywords: bound constrained nonlinear optimization problems, conjugate 
gradient algorithms, quasi-Newton methods. 

1. Introduction 
In this paper we consider algorithms for the problem: 

min f (x) 
xcRn 

s .  t .  15 z 5 u, 

where 1 ,  u E Rn. 
In [9] (see also [4]) a new family of conjugate gradient algorithms has been 

introduced whose direction finding subproblem is given by 

Please use the following format when citing this chapter: 
Author(s) [insert Last name, First-name initial(s)]. 2006. in IFIP International Federation for Inform- 
ation Processing, Volume 199, System Modeling and Optimization, e d ~ .  Ceragioli F., Dontchev A,; 
Furuta H.. Marti K., Pandolfi L., (Boston: Springer). pp. [insert page numbers]. 



where N r { a ,  b )  is defined as the point from a line segment spanned by the 
vectors a and b  which has the smallest norm, i.e., 

1 1  . / I  is the Euclidean norm and gr, = V f ( x k ) .  
Notice that if pk = 1 then we have the Wolfe-LemarCchal algorithm ([7], 

[13]). In [9] it was shown that the Wolfe-LemarCchal algorithm is in fact the 
Fletcher-Reeves algorithm when directional minimization is exact. Moreover, 
the sequence { P k )  was constructed in such way that directions generated by 
(3) are equivalent to those provided by the Polak-RibiCre formula (under the 
assumption that directional minimization is exact). This sequence 

has striking resemblance to the Polak-RibiCre formula. 

2. General preconditioned conjugate gradient algorithm 
The idea behind preconditioned conjugate gradient algorithm is to transform 

the decision vector by linear transformation D  such that after the transformation 
the nonlinear problem is easier to solve. If 2  is transformed x: 

2 = D x  

then our minimization problem will become 

rnjn z [ f ( 2 )  = f (D-'i)] 

and for this problem the search direction will be defined as follows 

& = -Nr{Vf (?r , ) ,  -,&&-1) 

Notice that 

of(?) = D - ~ V  f ( 2 )  

therefore we can write 

dl, = - N ~ { D - ~ v  f ( D - ' ? ~ ) ;  - f i k & - l } .  

If we multiply both sides of (10) by D-I we will get 

d k  = - X ~ D - ~ D - ~ V ~ ( Z ~ )  + (1  - x ~ )  pkdr,- l .  

where 0 5 X k  < 1  and either 

pk = 1 
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for the Fletcher-Reeves version, or 

for the Polak-Ribiere version. 
The equation (1 1) can be stated as 

where H = D - ~ D - ~ .  This suggests that D should be chosen in such a way 
that DTD is an approximation to v$, f ( 5 )  where 5  is a solution of problem 
(1). 

Moreover, if D is an upper triangular matrix then at each iteration of the 
algorithm we will have to solve the system of linear equations 

It is worthwhile to notice that the following holds (see [ l l ] ) :  

i f O < X k  < 1. 
If box constraints (2) are present in our problem then we can tackle them by 

using the projection procedure proposed initially in [I] (see also [lo]). 
In the rest of the paper we consider, for the simplicity of presentation, the 

problems with simpler constraints z 2 0. We define the set of indices I: 

where { E I , )  is such that > 0 and 

lim / ( x k  - P[xk - V f ( X I , ) ] /  = 0 lim ~k = 0. 
k € K  kcK (17) 

for any subsequence { x ~ ) ~ , ~ .  Here, by P[.]  we denote the projection operator 
on the set { x  E Rn : 1 5 z 5 u) ([I]). 

The sets I: are used to modify the direction finding subproblem. Instead of 
solving problem (3) we find a new direction according to the rule 

Here d t - l  is defined by 



To complete the description of the main components of our algorithm we 
have to show how to use scaling matrices in its preconditioned version. Having 
the set of indices I: we do not scale variables corresponding to them and we 
apply general scaling to the others. Therefore, we use the scaling matrix of the 
form 

where nk = 1 I: 1 .  
In order to describe the line search procedure notice that the function f ( P [ x k +  

a d k ] )  can be interpreted as a composition of two functions: the first one is Lip- 
schitzian and the second one continuously differentiable. If we define 

and the breakpoints {a;)?  are calculated as follows 

(assuming that if (dk) i  2 0  then a i  = m), then our directional minimization 
rule can be stated as follows. 

R1 find the largest positive number ak from the set { B k  : I, = 0 , 1 ,  . . . , 0  E 
( 0 , l ) )  such that for p E ( 0 , l )  we have 

Notice that in the rule RI we employ dk instead of ik as (15) would imply. 

Since we assume that D ~ D ~  are uniformly bounded from below and above (in 
the sense of condition (26)) there exist constants 0  < cl < cz < +w such 
that cl /Idr, / /  5 i/ik/i 5 c2 /Idk 1 1 .  Thus the use of dk on the left on inequality in 
the rule Rl  is justified (it corresponds to appropriately choosing the coefficient 
1-1). It is worthwhile to observe that our descent direction rule allows for such 
inaccurate directional minimization search. 

Our general algorithm is as follows: 

Algorithm Parameters: p E (0 ,  I ) ,  E > 0 ,  {pk )? ,  
{ D k ) y ,  Dk E Rnxn nonsingular matrix, T E RnXn nonsingular diagonal 
matrix. 
Data: xo 
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1) Set k = 0, compute dk = -gk, go to Step 3). 
2)Compute: wk = xk - P[xk - TV f ( x )  EI, = min(e, Ilwk//): 

If wk = 0 then STOP. 
3) Find a positive number ar, according to the rule R I .  
4) Substitute P[xk + akdk] for xk+l, increase k by one, go to Step 2. 
We can prove the lemma 

LEMMA 1 Assume that xk is a noncritical point, D ~ D ~  is positive definite 
and dk # 0 is calculated in Step 2 of Algorithm. Then there exists a positive 
arc such that the condition stated in the rule RI is 

lim f (P[zk $. adk]) = -m. 
0'00 

(25) 

To investigate the convergence of Algorithm we begin by providing a crucial 
lemma which requires the following assumptions. 

ASSUMPTION 1 There exists L < cx, such that 

IlVf (Y) - Vf (x)l/ 5 Lily - X I \  
for all x, y from a bounded set. 

ASSUMPTION 2 There exist dl, d, such that 0 < dl < d, < +oo and 

LEMMA 2 Suppose that Assumptions 1-2 hold, the direction dl, is determined 
by (22)-(24) and the step-size coeficient ak is calculated according to the rule 
R1. Then, for any bounded subsequence {xk)kEX either 

For the convenience of future notations we assume that variables ( x ) ~  have 
been reordered in such a way that dk can be partitioned into two vectors (d;, di) 
where the first vector d; is represented by 



The same convention applies to other vectors. 

THEOREM 3 Suppose that Assumptions 1-2 are satisfied. Moreovel; assume 
that for any convergent subsequence { x k ) k E K  whose limit is not a critical point 

i )  {pk) is such that 

where y is some positive constant, 

ii) there exists a number v 2  such that u2 1 1  D i T  112 1 1  DkPl  / I 2  E ( 0 , l )  and 

Then limk,, f ( x k )  = -oo, or every accumulation point of the sequence 
{ x k ) p  generated by Algorithm is a critical point. 

Our global convergence result is as follows. 

THEOREM 4 Suppose that Assumptions 1-2 are satisfied. Then Algorithm 
generates { x k )  such that every accumulation point of {x i , )  satisfies necessary 
optimality conditions for problem (1)-(2) provided that: 

i )  pk is given by 

ii) there exists M < oo such that cuk 5 M ,  Vk. 

3. Scaling matrices based on the compact representation 
of BFGS matrices 

In the previous section we showed that for a given nonsingular matrix H-I = 
D T D  the preconditioned conjugate gradient algorithm is globally convergent. 
The use of constant scaling matrix is likely to be inefficient since the function f 
we minimize is nonlinear. Therefore, we are loolung at the sequence of matrices 
{ H k )  such that each H;' is as close as possible to the Hessian v:, f ( x k )  and 
can be easily factorized as ~ f i l ~ f i ~  where Dk is a nonsingular matrix. We 
assume, for the simplicity of presentation, that nk r 0. 

In the paper we present the preconditioned conjugate gradient algorithm 
based on the BFGS updating formula. To this end we recall compact represen- 
tations of quasi-Newton matrices described in [8]. Suppose that the k vector 
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pairs { s i ,  y i ) f z i  satisfy s r y i  > 0 for i = k - m - 1, . . . , k - 1. If we assume 
that Bo = and introduce matrices Mk = [ykSk Yk],  

where si = xi+l - xi and yi = gi+l - gi, then LBFGS approximation to the 
Hessian matrix is 

and W k  E Rmxm is nonsingular ([3]). 
In order to transform the matrix Bk to the form D T D ~  we do the QR factor- 

ization of the matrix 211:: 

where Qk is n x n orthogonal matrix and Rk the n x m matrix which has zero 
elements except the elements constituting the upper m x m submatrix. Taking 
into account that Q ~ Q ~  = I  we can write (33) as 

Notice that the matrix R;WkRk has zero elements except those lying in the 
upper left m x m submatrix. We denote this submatrix by Tk and we can 
easily show that it is a positive definite matrix. If we compute the Cholesky 
decomposition of the matrix ykIk - Tk,  ykIk - Tk = C r C k  then eventually 
we come to the relation 

T T Bk = Qk Fk FkQk (36) 

with 

The desired decomposition of the matrix Bk is thus given by 

T 
Bk = Dk Dk, Dk = FkQk (38) 

where the matrix Dk is nonsingular provided that sTyi > 0 for i = k - m - 1, 
. . . , k - 1. Notice that the matrix Qk does not have to be stored since it can be 
easily evaluated from the Householder vectors which have been used in the QR 
factorization. 

Recall the relation (14) which now can be written as 



4. Scaling matrices - the reduced Hessian approach 

The approach is based on the limited memory reduced Hessian method pro- 
posed by Gill and Leonard ([5],[6], see also [12]) 

Suppose that Gk = span { g o ,  91, . . . , gk)  and let G; denote the orthogonal 
complement of Gk in Rn. If Bk E Rnxrk have columns that define the basis 
of GI, and 

is the QR decomposition of Bk then 

where Qk = ( Z k  W k )  and range(Bk) = range(Zk). (40) follows from the 
theorem which was stated, among others, in [6]: 

THEOREM 5 Suppose that the BFGS method is applied to a general nonlinear 
function. I f  Bo = oIn and 

Bkdk = - g k ,  

then d k  E GI, for all k. Furthermore, i f z  E GI, and wi, E G;, then Bkz E 
and B k w  = nw. 

From (40) we have 

Therefore, it follows that we can take as Dk: 

At every iteration we have to solve equations 

Solving these equations requires multiplication of vectors in Rn by the or- 
thogonal matrix Qk (or &;), and this can be achieved by the sequence of 
m multiplications of the Householder matrices Hi, i = 1,. . . , m such that 
Qk = HlHi . . . Hr. The cost of these multiplications is proportional to n. 
Furthermore, we have to solve the set on n linear equations with the upper 
triangular matrix G k ,  or its transpose. 
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5. Numerical experiments 
In order to verify the effectiveness of our algorithm we have tested it on 

problems from the CUTE collection ([2]). We tried it on problems with vari- 
ous dimension although its application is recommended for solving large scale 
problems. 

Algorithm has been implemented in C on Intel PC under Linux operating 
system. We compared our algorithm with the L-BFGS-B code which is the 
benchmark procedure for problems with box constraints for which evaluating 
the Hessian matrix is too expensive. L-BFGS-B code was used with the para- 
meter m = 5 and we applied m = 5 and we recalculated matrices Dk every five 
iterations in Algorithm. The stopping criterion was I /  V f (x) I /  / max(1, jjz 11) 5 

We used the scaling matrices as described in Section 3. 

10 1 0 1 
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Fig~lre  1. Performance comparison of Algorithm against the L-BFGS-B code. 



The performance comparison of Algorithm is given in Figure 1. where we 
compare it with the code L-BFGS-B presented in [14]. For each problem the 
bars represent the ratio of the number of iterations (LIT), number of function 
evaluations (IF) and computing time (CPU) needed by the Algorithm divided 
by those from the executions of the L-BFGS-B code. Therefore values above 
one testify in favor of the L-BFGS-B and below one - in favor of our algorithm. 
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Abstract Reliability and durability of civil infrastructure systems such as highway bridges 
play a very important role in sustainable economic growth and social devel- 
opment of any country. The bridge infrastructure has been undergoing severe 
safety and condition deterioration due to gradual aging, aggressive environmen- 
tal stressors, and increasing traffic loads. Maintenance needs for deteriorating 
highway bridges, however, have far outpaced available scarce funds highway 
agencies can provide. Bridge management systems (BMSs) are thus critical to 
cost-effectively allocate limited maintenance resources to bridges for achieving 
satisfactory lifetime safety and performance. In existing BMSs, however, visual 
inspections are the most widely adopted practice to quantify and assess bridge 
conditions, which are unable to faithfully reflect structural capacity deterioration. 
Failure to detect structural deficiency due to, for example, corrosion and fatigue, 
and inability to accurately assess real bridge health states may lead to unreliable 
bridge management decisions and even enormous safety and economic conse- 
quences. In this paper, recent advances in risk-based life-cycle maintenance 
management of deteriorating civil infrastructure systems with emphasis on high- 
way bridges are reviewed. Methods of predicting lifetime safety and performance 
of highway bridges with and without maintenance are discussed. Treatment of 
various uncertainties associated with the complex deterioration processes due 
to time-dependent loading, environmental stressors, structural resistances, and 
maintenance actions are emphasized. The bridge maintenance management is 
formulated as a nonlinear, discrete, combinatorial optimization problem with si- 
multaneous consideration of multiple and conflicting objectives, which address 
bridge safety and performance as well as long-term economic consequences. The 
effectiveness of genetic algorithms as a numerical multiobjective optimizer for 
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producing Pareto-optimal tradeoff solutions is demonstrated. The proposed prob- 
abilistic multiobjective optimization BMS is applied at project-level for similar 
bridges and at network-level for a group of different bridges that form a highway 
network. 

Keywords: System reliability, optimization, civil infrastructure, bridges, genetic algorithms. 

1. Introduction 
Future sustained economic growth and social development of any country 

is intimately linked to the reliability and durability of its civil infrastructure 
systems such as highway bridges, which are the most critical but vulnerable 
elements in highway transportation systems. Highway bridges have been and 
are constantly subject to aggressive environments and ever-increasing traffic 
volumes and heavier truckloads, which degrade at an alarming rate the long- 
term bridge performance. In the United States, nearly 30% of the 600,000 
existing bridges nationwide are structurally deficient or functionally obsolete; 
the associated costs of maintenance, repair, and replacement are enormous [14]. 

Deteriorating civil infrastructure leads to increased direct and indirect costs 
for business and users. Catastrophic failure of civil infrastructures due to nat- 
ural hazards (e.g. earthquakes, hurricanes, and floods) and manmade disasters 
(e.g, vehicular collision and explosive blasts due to terrorists' attacks) [15] 
can cause widespread social and economic consequences. Therefore, timely 
and adequate maintenance interventions become indispensable to enhance re- 
silience of civil infrastructure to adverse circumstances. This can substantially 
increase a country's economic competitiveness. In addition to development 
of advanced inspection and maintenance technologies, methodologies for cost- 
effective allocation of limited budgets to maintenance management of aging 
and deteriorating civil infrastructure over the life-cycle are urgently needed in 
order to optimally balance the Iifetime performance and life-cycle cost while 
ensuring structure safety above acceptable levels. 

A variety of practical bridge management systems (BMSs) have been de- 
veloped and implemented in the United States for achieving desirable man- 
agement solutions to maintain satisfactory bridge infrastructure performance, 
including BRIDGIT [20] and Pontis [30]. Most existing BMSs, however, utilize 
the least long-term economic cost criterion [28]. Recently, practicing bridge 
managers showed that this approach may not necessarily result in satisfactory 
long-term bridge performance [29]. Additionally, visual inspection is the most 
widely used practice to determine the condition and performance deterioration 
of bridges [I]. This highly subjective evaluation technique leads to significant 
variability in condition assessment [27]. More importantly, the actual level of 
structure safety against sudden failure and progressive degradation risks cannot 
be faithfully or accurately described by visual inspection-based bridge condition 
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assessment [13]. Accordingly, maintenance decisions made solely on visual in- 
spection results are not necessarily cost-effective and may cause tremendous 
safety and economic consequences if inadequate or unnecessary maintenance 
interventions are performed. 

In order to resolve the above problems, all necessary long-term performance 
and expense considerations need to be incorporated into the maintenance man- 
agement decision-malung process. These multiple aspects include bridge per- 
formance such as visual inspection-based condition states, computation-based 
safety and reliability indices, and life-cycle costs such as agency cost and user 
cost. Unlike the traditional cost minimization approach, the above multiple 
criteria should be treated simultaneously so that a multiobjective optimization 
formulation is generated. As a result, the proposed risldreliability-based main- 
tenance management methodology leads to a group of optimized management 
solution options, exhibiting tradeoff between reducing life-cycle cost and im- 
proving structure performance. This significantly enables bridge managers to 
actively and preferably compromise structure safety/reliability and other con- 
flicting objectives under budget and/or performance constraints. 

In order to make rational decisions in preservation of deteriorating civil 
infrastructure, it is imperative that sources of uncertainty associated with the 
deterioration process with and without maintenance be addressed appropriately. 
These include imperfect description of mechanical loadings and environmental 
stressors as well as inexact prediction of deteriorating structure performance. 
There are two general types of uncertainty: aleatory and episternic. The aleatory 
uncertainty is caused by inherent variation of structure deterioration due to 
combined effects of complex traffic loadings and environmental stressors as 
well as physical aging. The epistemic uncertainty stems from the random- 
ness caused by subjective assumption in evaluating demand and load-carrying 
capacity of bridges or insufficient knowledge in understanding, for example, 
deterioration mechanisms. This type of uncertainty may be reduced provided 
more information is available [12]. Probable maintenance actions over the life 
cycle add further uncertainty to accurate prediction of time-varying structure 
performance. 

In this paper, recent advances in application of multiobjective optimization 
techniques to risk-based maintenance management of civil infrastructure, in 
particular, highway bridges are reviewed. The multiple and competing objec- 
tive functions of interest include condition, safety and life-cycle cost. Uncer- 
tainties associated with the deterioration process with and without maintenance 
interventions are treated by Monte Carlo simulation and/or structural reliability 
theory. The basic theory and effectiveness of evolutionary computation tech- 
niques such as genetic algorithms (GAS) in solving multiobjective optimization 
problems are discussed. Two application examples of GA-based bridge main- 
tenance management are provided. The first example deals with project-level 



maintenance management of preserving a large population of similar deteriorat- 
ing highway reinforced concrete crossheads. The second example is concerned 
with network-level bridge maintenance management for a number of different 
bridges that form a highway transportation network. 

2. Multiobjective Optimization Algorithms 
Because bridge management involves scheduling of different maintenance 

strategies to different bridges at discrete years, it can be readily formulated as a 
combinatorial optimization problem for which multiple and usually conflicting 
objectives need to be considered. In this section, the basic concept of multiob- 
jective optimization is presented, the techniques of genetic algorithms (GAS) 
are discussed, and the application of GAs to the civil infrastructure management 
problems is emphasized. 

2.1 General Formulation 
A generic multiobjective optimization problem can be stated as 

where f is a set of objective functions that are usually conflicting in nature; 
C is a set of constraints that define the valid solution space; x  = a vector of 
design variables. Unlike optimization problems with single objectives, there 
are no unique solutions that can optimize all objectives simultaneously for a 
multiobjective optimization problem. Instead, a group of Pareto-optimal or 
nondominated solutions are present, which exhibit the optimized tradeoff in 
compromising these objectives. A solution x* is Pareto-optimal if and only if 
there does not exist another solution that is no worse in all objectives and is 
strictly better in at least one objective. If all objectives are to be minimized, 
this can be stated mathematically as 

f i ( x )  5 fi ( x * ) ,  for i = 1,2, . . . , m; and 
f k ( x )  5 f k ( x * ) ,  for at least kth objective. (2) 

2.2 Genetic Algorithms 
Most traditional optimization algorithms are problem-dependent and single- 

objective oriented. Gradients are usually utilized to guide the search process 
and continuous design variables are often assumed. These pose significant dif- 
ficulties to practical maintenance management problems. In contrast, heuristic 
algorithms based on evolutionary strategies such as GAs [19], simulated an- 
nealing [25], and tabu search [18] are very suitable for practical maintenance 
scheduling problems. In particular, GAS are stochastic search and optimiza- 
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tion engines that follow the survival-of-the-fitness theory from the biological 
sciences. Since their inception in the 1960's, GAS have been successfully used 
in a wide array of applications due to their ease of implementation and robust 
performance for difficult engineering and science problems of vastly different 
natures. GAS are general-purpose numerical tools and gradients are no longer 
needed and discrete-valued design variables can be handled without difficulty. 
More importantly, GAS can handle multiple objectives simultaneously. 

GAS usually operate on solutions that are encoded as genotypic representa- 
tions (i.e. chromosomes) from their original phenotypic representations (i.e. 
actual data values). GAS start with a set of initial solutions (population) that 
is randomly generated in the search space. For each solution in the current 
population, objective functions defining the optimization problem are evalu- 
ated and a fitness value is assigned to reflect its (relative) merit standing in the 
population. Based on the fitness values, GAS perform a selection operation that 
reproduces a set of solutions with higher fitness values from the previous gen- 
eration to fill a mating pool. A crossover operation is then pursued with which 
two parent solutions in the mating pool are randomly selected and interchange, 
with a prescribed probability, their respective string components at randomly 
selected bit locations referred to as cross sites. The resulting new solutions are 
called children or offspring. This step is meant to hopefully combine better 
attributes from the parent solutions so that child solutions with improved merits 
could be created. The next operation in GA is mutation that changes the geno- 
type value at one or more randomly selected bit locations in a child solution 
with another prescribed probability. This operation serves to possibly recover 
useful information that could by no means be accessible through selection or 
crossover operation and therefore encourages search into a completely new so- 
lution space. After these three basic operations, a new generation is created. 
The search process continues until prescribed stopping criteria are met. 

A successful multiobjective GA must have the ability to obtain a nondomi- 
nated set of solutions close to the global Pareto-optimal front, and to have this 
solution set as diverse as possible, that is, to prevent solution clustering from 
occurring. Note that the selection operation is based on the relative fitness 
measures of solutions. Unlike single-objective problems where the objective 
function itself may be used as the fitness measure, after scaling and constraint- 
handling treatment, a multiobjective GA needs a single fitness measure that 
reflects the overall merit of multiple objectives. Multiobjective GAS have been 
fruitfully studied and developed in the last decade [7], many of which adopt 
Goldberg's nondominated sorting technique [19] to rank all solutions in a pop- 
ulation, as discussed in the following. 

For a given population of solutions, a nondominated subset is first identi- 
fied according to the definition of Pareto optimality as defined previously. All 
solutions in this nondominated subset are assigned a rank of one and are then 



Figure 1. Population ranking based on nondominated sorting 
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temporarily deleted from the population. The nondominated subset of the re- 
maining solutions is identified and assigned a rank of two. This procedure 
continues until all solutions in the population have been assigned appropriate 
ranks. A solution in the front of a lower-numbered rank is assigned a higher 
fitness than that of a solution in the front of a higher-numbered rank. As a result, 
solutions closer to the global Pareto-optimal front have higher fitness values. 
As an illustration, consider a generic problem that has two objectives to be min- 
imized. Fig. 1 indicates, in the solution space, ten solutions that are classified 
into four fronts with varied ranks. To assign fitness values to solutions with the 
same rank, niching strategies are used to determine relative fitness values by, 
for example, a crowding distance measure [lo]. This measure is taken as an 
average distance of the two solution points on either side of the current solution 
along each of the objectives and thus serves as an estimate of the density of 
solutions surrounding a particular solution in the population. 

Constraints in the GA-based optimization must be handled appropriately in 
GAS [6]. One possible approach is to assign to constraint-violating solutions 
dummy fitness values, which are defined in terms of degrees of constraint vio- 
lation and are always less than those of valid solutions in the population. Thus 
the original constrained optimization problems are equivalently converted into 
unconstrained problems. Alternatively, constraint-violation may be considered 
by modifying genetic operators instead of assigning fictitious fitness values to 
invalid solutions. Deb [lo] proposed a constrained binary tournament selection 
scheme that determines from two randomly picked solutions in the population 
the better solution based on three rules: (i) if both solutions are feasible, the 
one with higher fitness wins; (ii) if one solution is feasible and the other is in- 
feasible, the feasible one always wins; (iii) if two solutions are both infeasible, 
the one with less degree of constraint-violation wins. 

In multiobjective GAS, elitists usually refer to the generation-wise nondom- 
inated solutions. It is beneficial to retain elitist solutions in the subsequent 
generations for evolution operations due to their excellent genetic properties. 
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The stochastic nature of GAS, however, may disturb this ideal situation espe- 
cially at early generations when the number of elitists is much smaller than 
the population size. To solve this problem, the elitist strategy may be adopted 
by forcibly inserting nondominated solutions (elitists) from the last generation 
back to its offspring population after basic genetic operations (i.e. selection, 
cross, and mutation) are performed. An updated set of elitists is then identified 
based on the population augmented by the elitists from the last generation. Pre- 
vious studies have shown that the elitist scheme plays a crucial role in improving 
the optimization results [lo]. 

2.3 GA-Based Maintenance Management 

Research on use of multiobjective optimization techniques in maintenance 
management of civil infrastructure has appeared recently in the literature. Mul- 
tiple and conflicting performance indicators such as condition, safety, durabil- 
ity along with life-cycle cost are simultaneously considered as separate criteria 
[21,24,26,17]. Interestingly almost all these research activities are conducted 
using GAS as numerical optimizers. This is because the practical maintenance 
management problems can be best posed as combinatorial optimization [18]. 
Due to their inherent features as previously discussed, GAS are very effective 
for solving these kinds of problems. 

Many GAS work with a fixed population size. As generations evolve, the 
nondominated solutions fill most solution slots in a population, which may make 
it very difficult for dominated solutions to enter the population for genetic op- 
erations. As a result, the diversity of nondominated solutions in the subsequent 
generations may not be fully explored due to lack of information from valid 
yet dominated solutions. In this study, the initial GA population consists of 
1,000 randomly generated trial solutions and each of the subsequent genera- 
tions contains 200 offspring solutions plus the nondominated solutions from the 
previous (i.e. parent) generation. In addition, the fitness value is determined 
according to Goldberg's nondominated sorting plus Deb's crowding distance 
measure; Deb's constrained binary tournament selection scheme is adopted; a 
uniform crossover is applied with a probability of 50%; a uniform mutation 
is performed with a probability of 5%. Although this is a relatively high rate 
of mutation, by using elitism to preserve the nondominated solutions at each 
generation, mutation tends not to be very disruptive; sometimes a high level of 
mutation is used to avoid premature convergence. 

3. Bridge Maintenance Management at Project-Level 

Much effort has been devoted by researchers and practitioners to develop 
methodologies for long-term maintenance management of deteriorating brid- 
ges [8,12,13,16,17] Most previous research can be categorized as project-level 



types because only individual bridges or a group of similar bridges are consid- 
ered. In this section, the time-dependent bridge performance deterioration with 
and without maintenance interventions is predicted by a continuous compu- 
tational model [16]. This model describes the performance profiles without 
maintenance by a curve characterized by an initial performance level, time to 
damage initiation, and a deterioration curve governed by appropriate functions 
and, in the simplest form, a linear function with a constant deterioration rate. 
Effects of a generic maintenance action include prompt performance improve- 
ment, deterioration suppression for a prescribed period of time, deterioration 
severity reduction, and prescribed duration of maintenance effect. Epistemic 
uncertainties associated with the deterioration process are considered in terms 
of respective probabilistic distributions of the controlling parameters of this 
computational model. Monte Carlo simulation is used to account for these un- 
certainties by obtaining statistical performance profiles of deteriorating struc- 
tures. 

3.1 Problem Statement 
The GA-based management procedure is used to prioritize maintenance 

needs for deteriorating reinforced concrete highway crossheads through simul- 
taneous optimization of both structure performance and life-cycle maintenance 
cost. The maintenance management problem is thus posed as a combinatorial 
multiobjective optimization problem in that, for any year over the specified time 
horizon, at most one maintenance strategy may be carried out. Time-dependent 
performances of these structures are described using appropriate indicators in 
terms of condition and safety states. 

For reinforced concrete elements under corrosion attack in the United King- 
dom, Denton [l 11 categorized visual inspection-based condition states into four 
discrete levels, denoted as 0, 1, 2, and 3, that represent no chloride contami- 
nation, onset of corrosion, onset of cracking, and loose concretelsignificant 
delamination, respectively. A value larger than 3 indicates an unacceptable 
condition state. As a subjective measure, however, the condition index may not 
faithfully reflect the true ioad-carrying capacity of structural members. Accord- 
ing to bridge specifications in the United Kingdom, the safety index is defined 
as the ratio of available to required live load capacity [9]. It is considered 
unacceptable structure performance if the value of safety index drops below 
0.91. 

The goal is to obtain a set of sequences of maintenance actions applied over 
the specified time horizon that, in an optimized tradeoff manner, (i) decrease the 
largest (i.e. worst) lifetime condition index value, (ii) increase the smallest (i.e. 
worst) lifetime safety index value, and (iii) decrease the present value of life- 
cycle maintenance cost. The constraints are enforced such that the condition 
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index value must be always less than 3.0 and the safety index value must be 
always greater than 0.91. 

Five maintenance strategies are considered: replacement of expansion joints, 
silane, cathodic protection, minor concrete repair, and rebuilding [11,22]. Re- 
placement of expansion joints is statistically the least costly. It does not improve 
performance or delay deterioration but alleviates deterioration severity of both 
condition and safety performance. The silane treatment reduces chloride pen- 
etration but does not correct existing defects or replace deteriorated structural 
components. Statistically speaking, silane reduces deterioration of condition 
more efficiently than replacement of expansion joints while having the same 
effects on safety deterioration. Cathodic protection replaces anodes and thus 
suppresses corrosion of reinforcing bars almost completely. It postpones deteri- 
oration of both condition and safety for 12.5 years upon application. The minor 
concrete repair strategy is applied to replace all cover concrete with visual de- 
fects but not corroded reinforcing bars. The rebuilding strategy improves both 
condition and safety levels to those values typical of a new structural component. 

3.2 Numerical Results 
In the numerical implementation, Monte Carlo simulation with a sample size 

of 1,000 is used to consider effects of uncertainty on prediction of both structure 
performance and life-cycle maintenance cost. All three objective functions are 
evaluated in terms of sample mean values. The service life is considered 50 
years and the monetary discount rate is 6%. A number of different optimized 
maintenance planning solutions are generated. These solutions represent the 
optimized tradeoff among the condition, safety, and life-cycle maintenance cost 
objectives. Three representative maintenance solutions with different levels of 
performance enhancement and maintenance needs are shown in Fig. 2. Detailed 
information can be found in [22]. 

4. Bridge Maintenance Management at Network-Level 
Compared to the above project-level maintenance management, a transporta- 

tion network-oriented methodology provides more rational solutions because 
the ultimate objective of maintenance management is to improve performance 
of the entire transportation network instead of merely that of individual struc- 
tures in the network. In this section, performance evaluation of deteriorating 
bridge networks is discussed and network-level maintenance management is 
presented and illustrated with numerical examples. 

5. Problem Statement 
The network reliability measures the level of satisfactory network perfor- 

mance. Most studies on assessment of reliability for transportation highway 



Figure 2. Tradeoff of three project-level maintenance-scheduling solutions 

9: 1 
1.4 1.5 1.6 1.7 

SAFETY NDEX 

17 

1 6- 
E 
n 
Z 
>I 5 -  

i 
LC 

14-  

1 3- 

infrastructures have focused on maintenance management of deteriorating road 
networks for which a travel path consists of multiple links (i.e. roadways be- 
tween any two nodes) with binary states (either operational or failed). There 
are three network reliability measures with ascending levels of sophistication: 
connectivity reliability, travel time reliability, and capacity reliability [4,5]. The 
connectivity reliability is associated with the probability that nodes in a high- 
way network are connected; in particular, the terminal connectivity refers to the 
existence of at least one operational path that connects the origin and destination 
(OD) nodes of interest. The travel time reliability indicates the probability that a 
successful trip between a specified OD pair can be made within given time inter- 
val and level-of-service. Based on this reliability measure, the appropriate level 
of service that should be maintained in the presence of network deterioration 
can be determined. The third measure is the capacity reliability, which reflects 
the possibility of the network to accommodate given traffic demands at a speci- 
fied service level. In this formulation, link capacities may be treated as random 
variables to consider the time-dependent probabilistic capacity deterioration. 
Inherent in the last two reliability measures are the determination of risk-taking 
route choice models for simulating travelers' behavior in the presence of both 
perception error and network uncertainty [ 5 ] .  
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For maintenance management of deteriorating highway networks, it is also 
very important to use economic terms as a measure of the overall network 
performance. There are two basic types of costs: agent cost and user cost. The 
agent cost is composed of direct material and labor expenses needed to perform 
routine and preventive maintenance, rehabilitation, and replacement of existing 
transportation facilities. The indirect user costs are caused by loss of adequate 
service due to, for example, congestion and detour. In some situations the user 
cost may be a dominating factor in evaluating the overall life-cycle costs for a 
transportation network. The uncertainty associated with capacity degradation 
and demand variation should be integrated in the analysis in order to obtain a 
reliable cost measure. 

In this study, the goal of network-level maintenance management is to prior- 
itize maintenance needs to bridges that are of most importance to the network 
performance and over the specified time horizon. The overall goal is to satisfy 
the following two requirements in a simultaneous and balanced manner: (i) the 
overall bridge network performance, which is measured by the lowest level of 
the lifetime reliability of connectivity between the origin and destination loca- 
tions, is improved, and (ii) the present value of total life-cycle maintenance cost 
is reduced. 

Four different maintenance strategies are considered herein for enhancing 
bridge network performance in terms of reliability levels of deteriorating re- 
inforced concrete bridge deck slabs: resin injection, slab thickness increasing, 
steel plate attaching, and complete replacement [17]. Resin injection is the 
least costly maintenance type among the four options. It injects epoxy resin 
into voids and seals cracks in concrete, which repairs the aging deck slabs by 
reducing the corrosion of reinforcement due to exposure to the open air. The 
reduction rate in reliability deterioration is assumed 0.031year for 15 years. The 
other three maintenance strategies instantly improve the bridge reliability level 
by various amounts upon application. Increasing slab thickness and attaching 
steel plate increase the system reliability indices by a maximum of 0.7 and 2.0, 
respectively, with unit costs being us$300/m2 and U S $ G O O / ~ ~ ,  respectively. 
The complete replacement option restores the structural system to the initial 
reliability level with a unit cost of ~ ~ $ 9 0 0 / m ~ .  

5.1 Numerical Results 
The network-level maintenance management is illustrated using a real bridge 

network in Colorado [3]. This network consists of thirteen bridges of different 
types. The network performance is evaluated in terms of the terminal reliability 
for connectivity between two designated locations. Flexure failure of bridge 
slabs is considered as the only failure mode [2]. Deterioration of reinforcement 
is caused by deicing chemicals related corrosion. The life cycle is consid- 



Figure 3. Tradeoff of three network-level maintenance-scheduling solutions 
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ered 30 years and the discount rate is 6%. The optimized solutions by GA 
represent a wide spread tradeoff between the conflicting network connectivity 
(equivalently network disconnectivity probability) and the total maintenance 
cost objectives. Tradeoff of three representative solutions is plotted in Fig. 3. 
Detailed information can be found in [23]. 

6. Monitoring-Integrated Maintenance Manage- 
ment 

It is interesting and challenging to integrate the recent developments of struc- 
tural health monitoring (SHM) technologies into intelligent maintenance man- 
agement of civil infrastructure systems. Utilizing advanced sensinglinformation 
technology and structural modelinglidentification schemes, SHM detects, lo- 
cates, and quantifies structural damages caused by catastrophic natural or man- 
made events as well as by long-term- deterioration. These data assist bridge 
managers in assessing the health of existing bridges and thus in determining 
immediate or future maintenance needs for safety consideration and lifespan 
extension. Most existing research and practice in BMS and SHM, however, 
are carried out in a disconnected manner. Therefore, a unified framework is 
necessary to bridge this gap between these two research areas. 

Research in these areas represents a crucial step toward improving the tradi- 
tional approach to BMSs by providing bridge managers with an efficient tool to 
make timely and intelligent decisions on monitoring, evaluation, and mainte- 
nance of deteriorating highway bridges. This can be achieved by exploring the 
interaction between SHM and BMS strategies in terms of whole-life costing and 
structural safetylhealthlreliability. Prediction of time-dependent bridge perfor- 
mance with monitoring is essential in this endeavor. With monitored data, the 
time-dependent performance will be more reliably estimated and the mainte- 
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Figure 4. Bridge performance profiles with and without monitoring-integrated maintenance 
interventions 

nance interventions will be more accurately applied than in the case without 
monitoring. Fig. 4 schematically illustrates the influence of monitoring ac- 
tions on the prediction of bridge performance and on the ensuing maintenance 
interventions. In Fig. 4(a), with sensed data, earlier ,reaching the prescribed 
performance threshold is predicted, which incurs a timely maintenance inter- 
vention. Otherwise, if based on the non-monitoring performance prediction, 
the maintenance would not have been applied, which would cause tremendous 
risk concerns and consequences due to failure occurrence. Fig. 4(b) indicates 
another situation where the monitoring-enriched performance prediction makes 
unnecessary the maintenance actions predicted by the non-monitoring profile; 
in this case savings of maintenance costs can be enormous. Therefore, inter- 
actions among maintenance, monitoring, and management must be accurately 
analyzed in order to maintain bridges in timely and economical manners. 

1 A 

7. Conclusions 
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This paper reviews recent developments of risk-based maintenance manage- 
ment of civil infrastructure systems especially of highway bridges, emphasizing 
simultaneous consideration of multiple criteria related to long-term structure 
performance and life-cycle cost. Sources of uncertainty associated with the 
deterioration process are considered in probabilistic performance prediction 
of structures with and without maintenance interventions. The usefulness of 
genetic algorithms in solving the posed combinatorial multiobjective optimiza- 
tion problems is discussed. Two illustrative numerical examples are provided. 
The first example deals with project-level maintenance scheduling for a group 
of deteriorating reinforced concrete crossheads over a specified time horizon. 
Structure performance measures, in terms of visually inspected condition and 
computed load-carrying safety indices, and the present value of long-term main- 
tenance cost are treated as competing objectives. The second example is asso- 
ciated with network-level bridge maintenance management, in which a group 
of spatially distributed bridges that form a highway network is studied. The 
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overall network performance is assessed in terms of the terminal connectivity 
reliability. A maintenance solution contains a sequence of maintenance inter- 
ventions that are scheduled at discrete years to be applied to different bridges. 
The conflicting objectives of the network connectivity reliability and the total 
maintenance cost are subject to balanced optimization. A set of alternative so- 
lutions is produced that exhibits the best possible tradeoff among all competing 
objectives. Bridge managers' preference on the balance between the lifetime 
performance and life-cycle cost can be integrated into the decision-making 
process. Finally, research needs of integrating bridge management systems and 
structural health monitoring are discussed and illustrated. 
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Abstract In order to establish a rational bridge management program, it is necessary to 
develop a cost-effective decision-support system for the maintenance of bridges. 
In this paper, an attempt is made to develop a new multi-objective genetic algo- 
rithm for the bridge management system that can provide practical maintenance 
plans. Several numerical examples are presented to demonstrate the applicability 
and efficiency of the proposed method. 

keywords: Bridge Maintenance, Genetic Algorithm, Life-Cycle Cost, Multi- 
Objective Optimization, Repair 

1. INTRODUCTION 
In this paper, an attempt is made to apply a Multi-Objective Genetic Algo- 

rithm (MOGA) for the establishment of optimal planning of existing bridge 
structures. In order to establish a rational maintenance program for the bridge 
structures, it is necessary to evaluate the structural performance of existing 
bridges in a quantitative manner. So far, several structural performance indices 
have been developed, some of which are reliability, durability, and damage in- 
dices. However, it is often necessary to discuss the structural performance from 
the economic andlor social points of view. 

Life-Cycle Cost (LCC) is one of useful measures for evaluating the structural 
performance from another standpoint. Using these measures, the overall cost 
can be reduced and an appropriate allocation of resources can be achieved. In 
general, LCC optimization is to minimize the expected total cost which includes 
the initial cost involving design and construction, routine or preventive main- 
tenance cost, inspection, repair and failure costs. Then, the optimal strategy 
obtained by LCC optimization can be different according to the prescribed level 
of structural performance and required service life. 
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Figure 1. Pareto solutions 

In this paper, an attempt is made to discuss the relationships among sev- 
eral performance measures and provide rational balances of these measures by 
using MOGA. Furthermore, another attempt is made to develop a new multi- 
objective genetic algorithm for the bridge management problem that have a lot 
of constraints. Several numerical examples are presented to demonstrate the 
applicability and efficiency of the proposed method. 

2. MULTI-OB JECTIVE GENETIC ALGORITHM 

2.1 Multi-Objective Problem 
A multiple-objective optimization problem has two or more objective func- 

tions that cannot be integrated into a single objective function [I]. In general, 
the objective functions cannot be simultaneously minimized (or maximized). It 
is the essence of the problem that trade-off relations exist among the objective 
functions. The concept of "Pareto optimum" becomes important in order to 
balance the trade-off relations. The Pareto optimum solution is a solution that 
cannot improve an objective function without sacrificing other functions (Fig- 
ures 1 and 2). A dominated, also called non-dominant, solution is indicated in 
Figure 1. 

2.2 Multi-Objective Genetic Algorithm (MOGA) 
Genetic Algorithm (GA) is an evolutionary computing technique, in which 

candidates of solutions are mapped into GA space by encoding. The follow- 
ing steps are employed to obtain the optimal solutions [2]: a) initialization, b) 
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Relationship between safety level and cost 

Maintenance cost 

Figure 2. Cost-effective domain including Pareto solutions 

crossover, c) mutation, d) natural selection, and e) reproduction. Individuals, 
which are solution candidates, are initially generated at random. Then, steps 
b, c, d, and e are repeatedly implemented until the termination condition is 
fulfilled. Each individual has a fitness value to the environment. The environ- 
ment corresponds to the problem space and the fitness value corresponds to the 
evaluation value of objective function. Each individual has two aspects: Gene 
Type (GTYPE) expressing the chromosome or DNA and Phenomenon Type 
(PTYPE) expressing the solution. GA operations are applied to GTYPE and 
generate new children from parents (individuals) by effective searches in the 
problem space, and extend the search space by mutation to enhance the pos- 
sibility of individuals other than the neighbor of the solution. GA operations 
that generate useful children from their parents are performed by crossover op- 
eration of chromosome or genes (GTYPE) without using special knowledge 
and intelligence. This characteristic is considered as one of the reasons of the 
successful applications of GA [3]. 

3. FORMULATION OF BRIDGE MAINTENANCE 
PLANNING 

It is desirable to determine an appropriate life-cycle maintenance plan by 
comparing several solutions for various conditions [4][5]. A new decision 
support system is developed here from the viewpoint of multi-objective opti- 
mization, in order to provide various solutions needed for the decision-making. 

In this study, LCC, safety level and service life are used as objective functions. 
LCC is minimized, safety level is maximized, and service life is maximized. 
There are trade-off relations among the three objective functions. For example, 
LCC increases when service life is extended, and safety level and service life 
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Figure 3. Structure of DNA 
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decrease due to the reduction of LCC. Then, multi-objective optimization can 
provide a set of Pareto solutions that can not improve an objective function 
without making other objective functions worse [6]. 

In the proposed system, DNA structure is constituted as shown in Figure 3, 
in which DNA of each individual consists of three parts such as repair method, 
interval of repair, and shared service life (Figure 4). In this figure, service life 
is calculated as the sum of repairing years and their interval years. In Figure 4, 
service life is obtained as 67 years which is expressed as the sum of 30 years 
and 37 years. The repair part and the interval part have the same length. Gene 
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Figure 6. Mutation 

of repair part has ID number of repair method. The interval part has enough 
length to consider service life. In this system, ID 1 means surface painting, 
ID 2 surface coating, ID 3 section restoring, ID 4 desalting (re-alkalization) or 
cathodic protection, and ID 5 section restoring with surface covering. DNA of 
service life part has a binary expression with six bits and its value is changed 
to decimal number. 

In crossover, the system generates new candidates by using the procedure 
shown in Figure 5. For mutation, the system shown in Figure 6 is used. 

Then, objective functions are defined as follows: 

Objective function1 : Ctotnl = LCCi i min (1) 

where LCCi = LCC for bridgei 

Objective function2 : = Y ,  i rnax 

Constraints : Y ,  > YTeqUiTed 
where Y ,  = Service life of bridgei, YTeqUiTed = Required service life 

Objective function3FPtOtaI = Pi -+ maz (3) 

Constraints : Pi > PtaTget 
where PtnTget = Target safety level 

The above objective functions have trade-off relations to each other. Namely, 
the maximization of safety level or maximization of service life cannot be 
realized without increasing LCC. On the other hand, the minimization of LCC 
can be possible only if the service life and/or the safety level decreases. 



Figure 7. Concept of Front 

4. NEW MULTI-OB JECTIVE GENETIC ALGORITHM 
As mentioned before, the formulation of bridge maintenance planning has 

several constraint conditions. In usual, it is not easy to solve multi-objective 
optimization problems with constraints by applying the multi-objective genetic 
algorithm. 

In this study, an improvement is made on the selection process by introducing 
the sorting technique. The selection is performed using so-called sorting rules 
which arrange the list of individuals in the order of higher evaluation values. 
Then, the fitness values are assigned to them by using the linear normaliza- 
tion technique. In usual, if the fitness values are calculated directly according 
to the evaluation values, the differences among every individuals decrease so 
that the effective selection can not be done. On the other hand, the linear nor- 
malization technique enables to keep the selection pressure constant so that it 
may continue the selection well. In this study, the selection procedure is im- 
proved coupling the linear normalization technique and the sorting technique. 
Using the evaluation values, the individuals are reordered and given the new 
fitness values. Figure 7 presents the process of the selection proposed here. 
The individuals of satisfying the constraints are arranged first according to the 
evaluation values and followingly the individuals of unsatisfying the constraints 
are arranged according to the degree of violating the constraints. Accordingly, 
all the individuals are given the fitness values using the linear normalization 
technique. 

In order to apply the sorting rules to the multi-objective optimization prob- 
lems, the non- dominated sorting method is used. In the non-dominated sorting 
method, the Pareto solutions are defined as Frontl. Then, Front2 is determined 
by eliminating the Frontl from the set of solution candidates. Repeating the 
process, the new Front is pursued until the solution candidates diminish. Fur- 
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ther, the Fronts are stored in the pool of the next generation. If the pool is full, 
the individuals in the Front are divided into the solutions to survive or die based 
on the degree of congestion. 

In this study, the individuals are divided into the group of satisfying the 
constraints and the group without satisfying the constraints. The former is called 
as live individual, and the latter dead individual. While the live individuals 
are given the fitness values according to the evaluation values after the non- 
dominated sorting, the dead individuals are given the same fitness value. When 
implementing the non-dominated sorting, the Pareto front may not exist at the 
initial generation, because there remain a lot of dead individuals after the non- 
dominated sorting. Then, the dead individuals are arranged in the order of 
degree of violating the constraints and some of them are selected for the next 
generation. Thus, the multi-objective optimization problem with constraints 
are transformed into the minimization problem of violation of constraints. The 
elite preserve strategy is employed for the selection of survival individuals. 

When the generation is progressed, live individuals appear and then both the 
live individuals forming the Pareto front and the dead individuals arranged in 
the order of violation degree exist together. In this case, appropriate numbers 
of live and dead individuals are selected for the next generation. If the number 
of individuals involved in the Pareto front increases, only the individuals are 
selected for the next generation. 

5. NUMERICAL EXAMPLES 
Figures 5 through 9 present the results calculated for B01 model (Bridge 

1) with the constraint that safety level should be greater than 0.6 under the 
environment that neutralization is dominant. From Figure 5, it is seen that 
the number of live individuals immediately increases after 20 generations and 
reaches to 1000 at 40 generations. Similarly, the number of Pareto solutions 
increases with some fluctuation and converges after 125 generations. As the 
generation proceeds from 100 to 3000, the Pareto solutions can be improved 
smoothly. Figure 5 shows that the proposed method can provide solutions 
satisfying the safety requirement very well. Figure I0 shows the repair methods 
given by the proposed method. Figure 11 presents the results of B04, which 
gives the safety for every structural element that is greater than the prescribed 
target value 0.6, though the safety levels are different. Figure 12 shows the 
optimal combination of repair methods. 

6. CONCLUSIONS 
In this paper, an attempt was made to formulate the optimal maintenance 

planning as a multi-objective optimization problem. By considering LCC, 
safety level, and service life as objective functions, it is possible to obtain 



Figure 8. Calculated result for bridge 1 under the neutralization environment -relation between 
number of Pareto solutions and generation (left) and live solutions and generation (right) 
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Figure 11. Change of safety level of bridge 4 

Figure 12. Repair methods for bridge 4 



the relationships among these three performance indicators and provide bridge 
maintenance engineers with various maintenance plans with appropriate allo- 
cations of resources. Furthermore, another attempt was made to develop a new 
multi-objective genetic algorithm for the bridge management problem that has 
a lot of constraints. Based on the results presented in this paper, the following 
conclusions may be drawn: 

Since the optimal maintenance problem is a very complex combinator- 
ial problem, it is difficult to obtain reasonable solutions by the current 
optimization techniques. 

Although Genetic Algorithm (GA) is applicable to solve multi-objective 
problems, it is difficult to apply it to large and very complex bridge 
maintenance problems. By introducing the technique of Non-Dominated 
Sorting GA-2 (NSGA2), it is possible to obtain efficient near-optimal 
solutions for the maintenance planning of a group of bridge structures. 

Furthermore, the new GA method proposed here can much more im- 
prove the convergence and efficiency in the optimization procedure, by 
introducing the sorting based selection. 

The proposed method can provide many near-optimal maintenance plans 
with various reasonable LCC values, safety levels and service lives. 
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Abstract An approach for the Mixed Discrete Non-Linear Problems (MDNLP) by Particle 
Swarm Optimization is proposed. The penalty function to handle the discrete 
design variables is employed, in which the discrete design variables are treated 
as the continuous design variables by penalizing at the intervals. By using the 
penalty function, it is possible to handle all design variables as the continuous 
design variables. Through typical benchmark problem, the validity of proposed 
approach for MDNLP is examined. 

keywords: Global Optimization, Particle Swarm Optimization, Mixed Dis- 
crete Non-Linear Problems 

1. Introduction 
Particle Swarm Optimization (PSO), which mimics the social behavior, is an 

optimization technique developed by Kennedy et. al. [I] .  It has been reported 
that PSO is suitable for the minimization of the non-convex function of the 
continuous design variables through many numerical examples. Few researches 
of PSO have been reported about the discrete optirnizaton [Z]. These researches 
handle the discrete design variables as the continuous ones, directly. That 
is, firstly all design variables may be handled as the continuous ones, and 
optimized. Finally, the round-off or cut-off are applied to get the discrete 
optimum. These approaches may be valid in a sense, but some problems are 
included as shown in Fig.l(a), (b). 

Fig.l(a) shows a case. XL represents the optimum of the continuous design 
variables. Point A and B represent the discrete design variables close to XL. 
In this case, Point B is chosen as the neighborhood of XL by the round-off. 
However, the objective function at Point B makes a change of the function 
value worse, when compared with the objective function at Point A. [3] Another 
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Figure I .  The nature of discrete optimization 

case shown in Fig.l(b) is well known. That is, the optimum obtained by the 
round-off or the cut-off does not satisfy all feasibilities [4]. 

PSO is suitable for the global optimization of the non-convex function of the 
continuous design variables. Therefore, all design variables should be handled 
as the continuous ones whenever PSO is applied to the mixed or discrete design 
variables problems. 

In this paper, the penalty function approach to handle the discrete design 
variables is proposed. By using the penalty function for the discrete design 
variables, it is possible to handle the discrete design variables as the continuous 
ones. Through typical MDNLP, the validity of proposed approach is examined. 

2. Particle Swarm Optimization 
Particle Swarm Optimization (PSO) is one of the global optimization meth- 

ods for the continuous design variables [6] .  PSO does not utilize the gradient 
information of function like Genetic Algorithm. In PSO, each particle has the 
position and velocity, and they are updated by a simple addition and subtraction 
of vectors during search process. 

The position and velocity of particle d are represented by x: and v:, respec- 
tively. k represents iteration. The position and velocity of particle d at k+ l  th 
iteration are calculated by following equations. 

in which the coefficient u1 is called as inertia term, and rl and 7-2 denote random 
number between [0,1). The weighting coefficients cl and c;, are parameters. 
In general, cl = c;, = 2 is often used. p$, called as pbest, represents the best 
position of particle d till k th iteration, and p: called as gbest, represents the 
best position in the swarm till k th iteration. That is, pi is chosen among p;. 
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The inertia term in Eq.(2) gradually decreases during the search iteration. 

Wmaz - Wmin w = wmax - x k  
kmaz 

(3) 

in which, w,,, and wmi, represent the maximum and minimum value of inertia. 
k,,, represents the maximum number of search iteration. In general, w,,, = 
0.9 and wmin=0.4 are recommended [7]. 

2.1 PSO as an Optimization Technique 
From Eq.(l) and Eq.(2), the following equation can be obtained. 

%k+l d = X ~ + W  k x ~ ; f c r ( q - ~ ; )  (4) 

in which cr and q are represented as follows, respectively. 

From Eq.(4), it is possible to interpret that q - xi  represents the search direction 
when we imagine the similarity to the gradient methods. cr in Eq.(4) also may 
be regarded as stochastic step-size, in which its lower and upper bounds are 
0 and el+e2, and the mean value is (el + c2)/2. From these relationships, 
it is possible to consider that PSO has a search direction vector and stochastic 
step-size even though PSO does not utilize the gradient information of function. 

3. Penalty Function Approach for MDNLP by PSO 

3.1 Problem Definition 
In general, the Mixed Discrete Non-Linear Problem (MDNLP) is described 

as follows [5]: 
f (x) i m i n  (7) 

gk (x )  5 0 k = l , 2 ,  . . .  ,ncon (10) 

where x represents the design variables, which consist of the continuous and 
discrete design variables. f (x)  is the objective function, and gk(x) is the behav- 
ior constraints. neon represents the number of behavior constraints. xi denotes 



the continuous design variables, and m is the total number of continuous design 
variables. xt and xy denote the lower and upper bounds of continuous design 
variables, respectively. On the other hand, n is the total number of discrete 
design variables. Di is the set of discrete values for the i-th discrete design 
variable. di is the j-th discrete value for the i-th discrete design variables. q 
represents the number of discrete values. 

3.2 Penalty Function 
In this paper, the following penalty function suggested by [8] is adopted. 

where x&+~ is the continuous design variables between dij and di,j+l. Then 
the augmented objective function F ( x )  is constructed by using above penalty 
function as follows: 

ncon 

in which s and r denote the penalty parameters for Eq.(l I)  and Eq.(lO), respec- 
tively. Finally, MDNLP is transformed into the following continuous design 
variables problem. 

Fix) -, min (13) 

For the simplicity, the design variables are supposed as the discrete design 
variables in the following discussion. In the case of the mixed design variables, 
we discuss at section 3.7 separately. 

3.3 Characteristics of Penalty Function 
The value of Eq.( l l )  becomes small around the neighborhood of discrete 

value. On the other hand, the value of Eq.(l I )  becomes large, turning from 
discrete value. When p! satisfies the following equation, the discrete value 
resides around the neighborhood of p!. 

E in Eq.(16) represents small positive value. As a result, the penalty parameter 
s in Eq.(12) must be updated so that Eq.(16) is satisfied. In order to examine the 
effect of the penalty parameter s, let us consider a following simple problem. 
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8 
f ( x )  = x4 - - - 

3 
2x2 + 8x + rnin (17) 

In this simple example, the objective f ( x )  and the augmented objective 
function F ( x )  are shown in Fig.2. 

Augmented objective function 

Figure 2. Behavior of the augmented objective function 

From Fig.2, it is apparent that F ( x )  becomes non-convex and continuous. 
Additionally many local minima are generated around the neighborhood of 
the discrete values. As a result, the problem to find the discrete optimum is 
transformed into finding global minimum of F (x ) .  Additionally, the discrete 
values are given at the point, where the relative error between f (x )  and F ( x )  
becomes small. The following equation is utilized as terminal criteria. 

PSO does not use the gradient information of function, so that it is difficult 
to satisfy Eq.(16) strictly. Then, Eq.(19) is used instead of that. 

Behaviors of F ( x )  for various penalty parameter s are shown in Fig.3. From 
Fig.3, it is found that to determine a penalty parameter s in advance is very 
difficult. 

3.4 Initial Penalty Parameter s 

An initial search point x d  of particle d is determined randomly. Then the 
value of penalty function in Eq.(l1) is calculated for each particle. The penalty 
parameter s is determined as follows. 

where sd represents the penalty parameter of particle d. agent in Eq.(20) is the 
total number of particles. And initial penalty parameter si,iti,l is determined 
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Figure 3. Behavior of the augmented objective function for some parameter 

At the initial stage to search the optimum, F ( x )  is actively transformed 
into non-convex and continuous function, and many local minima are enerated 
around the neighborhood of the discrete value. 

3.5 Update Scheme of Penalty Parameter s 

The following equation is used to update the penalty parameter s. 

The behavior of F ( x )  by updating the penalty parameter s is shown schemat- 
ically in Fig.4. 

In Fig.4, solid line shows F ( x )  at k th iteration, and dotted line shows F ( x )  
at k + l  th iteration. As shown in Fig.4, F ( x )  at k+ l  th iteration becomes highly 
non-convex function in comparison with F ( x )  at k th iteration. For example, 
point .A in Fig.4 corresponds to the point p$ at k th iteration. By updating 
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Augmented objective function at k+l-th iteration 

F ( x )  / 

I 
I 

Search dlrectmn of pi 

X 

~ u ~ r n e n t d d  objective function at k-th iteration 

Figure 4. Update of penalty parameter s 

penalty parameter s, pi  corresponds to the point A' on the dotted line. As 
discussed in section 2.1, PSO has similar structure to the gradient methods, so 
that it is expected that p: moves to the direction in Fig.4. Finally. it is also 
expected that pi  will satisfy Eq.(19). 

3.6 Initilization of Penalty Parameter s 

When Eq.(19) is satisfied, the discrete value around the neighborhood of p: 
resides. Then an initial penalty parameter by Eq.(21) is utilized in order to find 
another discrete value, because F ( x )  becomes highly non-convex function by 
updating the penalty parameter s. It is assumed that p! fails to escape from 
local minimum. In such occasions, F ( x )  is relaxed by using an initial penalty 
parameter when Eq.(19) is satisfied. As a result, it is expected that p; can 
escape from local minimum. 

3.7 In the Case of Mixed Design Variables 
The component of p: can be expressed as follows: 

where xcGnt and xdiSCrt represent the components of the continuous and discrete 
design variables, respectively. Then, the components of the continuous design 
variables xcGnt in p: are neglected when the terminal criteria by Eq.(19) is 



applied. That is, only the components of the discrete design variables xdiScTt 
in p: are checked when the terminal criteria by Eq.(19) is utilized. 

3.8 Difference between Traditional and Proposed Method 

The penalty function of Eq.(l 1) is the same as [8]. However, its approach 
is very different from each other. Shin et. al. have searched an optimum by 
regarding all design variables as the continuous at the initial stage, the penalty 
parameter s in Eq.(12) has been set as zero. After the optimum obtained by 
regarding all design variables as the continuous has been found, the penalty 
function of Eq.( l l )  has been introduced to avoid the search procedure of global 
minimum among many local minima of F(x ) .  

On the other hand, the penalty parameter s is actively introduced at the initial 
stage in our approach. Obviously F ( x )  becomes non-convex and continuous. 
However, this is not serious problem because PSO is applied to F (x ) .  The 
new update scheme of penalty parameter s by Eq.(22) is proposed. In the past 
reports [4, 81, the constant positive number is used to update the penalty para- 
meter. However, the constant positive number depends on the problems. On 
the other hand, the penalty parameter s may always changes in our approach 
because the value of $ ( p i )  is utilized. It may be expected that flexible appli- 
cations may be possible. Finally, the initialization of the penalty parameter s 
is also introcuded in order to relax F(x) .  As a result, it is expected that pi can 
escape from local minimum. 

Binary PSO is also easy to handle the discrete design variables [9, 101. 
However, the search process of binary PSO is stochastic. Additionally, no 
proof that the objective or design domain is continuous is given. On the other 
hand, our approach adopted here utilizes the characteristics of PSO and the 
penalty function of Eq.(l I), in order to find optimum. That is, our approach 
may be deterministic, when compared with binary PSO. 

3.9 Algorithm 
The proposed algorithm for MDNLP by PSO is shown in Fig.5. 

4. Numerical Example 
To examine the validity of proposed approach, let us consider the optimum 

design of pressure vessel as shown in Fig.6. 
This problem is one of the most famous benchmark for MDNLP [9, 11- 

141. Several results are shown in table 1. From table 1, it is very difficult 
to find optimum solutions even though this problem consists of only 4 design 
variables. The design variables are 1) Radius R (continuous design variables: 
xl) ,  2) Length L (continuous design variables: xs), 3) Thickness Ts (discrete 
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1 Calculation of position and velocity for each particle, randomly. k=l 1 + 
Calculation of penalty parameters by Eq. (20), for each particlc 

.& 

'I 

Calculation of augrnsnr~.d obj<cri\.c function ior cnch particlc .t- 
+ 1 Calculation of p-best and g-best I 
& 

Update inertia term, and update position and vclocity for each particle 

/ Output g-best / 

Figure 5. The algorithm for MDNLP by PSO 

Figure 6. Optimum Design of Pressure Vessel 

design variables: x3) ,  and 4) Thickness Th (discrete design variables: x4) .  An 
optimization problem is defined as follows. 

f (x) = 0 . 6 2 2 4 ~ ~ ~ ~ ~ ~  + 1 . 7 7 8 1 ~ : ~ ~  + 3 . 1 6 6 1 ~ ~ ~ :  + 1 9 . 8 4 ~ ~ ~ ~  -+ min 
(24) 



in which x3 and x4 are the discrete design variables, 
of 0.0625 inch. 

i 0 (30) 

and are integer multiples 

Behavior constraints from Eq.(27) to Eq.(30) are handled as penalty function 
by using Eq.(12) The penalty parameter r is set as 1.0 x lo8. The number of 
particle is set as 50, and the maximum number of search iteration k,,, is also 
set as 500. 10 trials are performed with different random seed. The best result 
during 10 trials is shown in the last column "Kitayama" in table 1. From table 1, 
best result could be obtained by our proposed method. The average of function 
calls through 10 trials is 22500. 

Table 1. Comparison of results 

Sandgren Qian Kannan Hsu He Kitayama 
R[inch]: xl  47.00 58.31 58.29 N/A 42.10 42.37 
L[inch]:xz 117.70 44.52 43.69 N/A 176.64 173.42 
T,[inch]: 2 3  1.125 1.125 1.125 N/A 0.8125 0.8125 
Th[inch]: 24 0.625 0.625 0.625 N/A 0.4375 0.4375 

91 (x) -0.19 0.00 0.00 N/ A 0.00 0.00 
g2 (x) -0.28 -0.1 1 -0.1 1 N/A -0.08 -0.08 
g3 (x) -0.51 -0.81 -0.82 N/A -0.26 -0.28 
g4 (XI 0.05 -0.02 -1.1 1 N/A 0.00 0.00 

Obiective 8129.80 7238.83 7198.20 7021.67 6059.71 6029.87 

5. Conclusions 

In this paper, PSO has been applied to MDNLP. The penalty function for 
the discrete design variables is introduced, in order to handle as the continu- 
ous design variables. The augmented objective function becomes non-convex 
function of continuous design variables, by introducing penalty function. As 
considered that PSO is naturally suitable for the global search of non-convex 
function of the continuous design variables, our proposed approach may be 
valid. A method to determine the penalty parameter s and new update scheme 
of penalty parameter s have been also proposed. Through typical benchmark 
problem, the validity has been examined. 
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Abstract In a plastic injection molding, design of cooling pipe system is one of the impor- 
tant problems to reduce internal residual stresses of molded products. If plastic 
materials in the injection molding die are cooled down uniformly and slowly, 
generation of the residual stresses can be reduced. 

In this paper, a new method to design a cooling pipe system in the plastic 
injection molding die taking account of coolant flow in the pipe are presented. 
To consider the effect of the coolant flow, two kinds of models assumed plastic 
injection die are prepared. And shape optimization techniques are applied to 
design the cooling pipe system in the models. To evaluate the optimality, two 
kinds of evaluation functions, one is to obtain uniform temperature distribution 
and the other is to control cooling rate, are defined. 

keywords: Fluid Dynamics, Heat Transfer, Coupled Problem, Finite Ele- 
ment Method, Design Optimization 

1. Introductions 
Plastic injection molding is used widely to mold complex shapes of indus- 

trial products for mass production. In the plastic injection molding, one of 
the serious problems is the generation of residual strain and stress caused by 
non-uniform solidification of plastic materials. Cooling velocity of the injected 
plastic is slower than that of metal because of low heat conductivity of plas- 
tics. Therefore, differences of the cooling velocity part by part due to partial 
temperature gradient is appeared. These differences produce different molding 
shrinkage and internal residual stresses, which cause warps and cracks in the 
plastic molded products in some years after the molding. If the plastic materials 
in the solidification process are controlled well and cooled down uniformly, it 
is expected that the generation of the residual stress can be reduced much. 

Many researchers have tried to optimize the cooling pipe system to reduce 
the generation of residual stresses by numerical simulation. The automatic 

Please use the following format when citing this chapter: 
Author(s) [insert Last name, First-name initial(s)]. 2006. in IFIP International Federation for Inform- 
ation Processing, Volume 199, System Modeling and Optimization, e d ~ .  Ceragioli F., Dontchev A,; 
Furuta H.. Marti K., Pandolfi L., (Boston: Springer). pp. [insert page numbers]. 



design system of cooling pipes used straight line cooling pipe has been given 
[ I ,  21. Koresawa et al. suggested the automatic layout design system adopting 
complex cooling channels [3]. Recently, the plastic injection die with complex 
cooling channels can be produced by stereolithography system of metal powder. 
Therefore the complex layout will be adapted to plastic injection die. 

However, in these researches, some factors such as a coolant flow in the 
cooling pipe have not been taken into consideration. The coolant flow has not 
been considered when a cooling pipe system is designed and optimized. 

In this paper, we discuss about an optimization method of the cooling pipe 
system by talung coolant flow into account. For this purpose, two kinds of 
numerical models have been prepared; one is to confirm the validity of the 
evaluation function of objectives, the other is to consider the effect of the coolant 
flow in the process of optimization. These models are analyzed by the finite 
element code, which implements the heat transfer analysis and the fluid analysis. 
And the temperature distribution and its variation as well as the coolant velocity 
during the cooling process calculated by the analyses are adopted to optimize the 
cooling pipe system. Then, to decide the position of the cooling pipe, the basis 
vector method [4], which is one of the ways to treat a shape change and to control 
mesh adaptation, is adopted. In the basis vector method, the design variables 
are set by using the orthogonal array of the design of experiment (DOE). From 
the numerical analysis results the response surfaces are constructed. Then the 
optimum shape of the cooling pipe system is obtained by the mathematical 
programming method. 

2. How to optimize a cooling pipe system 

2.1 Optimization procedure 
In this research, the shape and the position of the cooling pipe system are 

taken as the design variables. The sampling points are assigned by the orthogo- 
nal array in DOE, and the numerical simulations have been implemented. Then 
the response surface for the evaluation fanctions are constructed and optimized. 
Figure 1 shows flow chart of the design processes. 

2.2 Numerical model 
The objective of this paper is to establish an optimization methodology for 

the cooling pipe system considering the coolant flow effect. To confirm the 
effect of suggested methodology, a numerical model shown in Figure 2, which 
is two dimensional model, with two lunds of different conditions, which are 
called "Case 1" and "Case 2", is prepared. The Case 1 does not consider the 
coolant flow effects. Therefore only the heat transfer analysis will be done. On 
the other hand, the Case 2 takes account of the coolant flow, which requires 
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analyzing both the fluid flow and the heat transfer. And we make the numerical 
model to compare the optimization results between Case 1 and Case 2. If the 
optimum shape of Case 2 is different from the shape of Case 1, we can confirm 
the effect of coolant flow. 

Preparat~on o f  Initial Numerical Model 
I 

Generation o f  Basis Vectors - 
Shape Changes by B a s s  Vectors h 

Mold Cooling Analysis - 
C 

Calculation and Opttmizat~on of  Responsc Surface 
I 

Figure 2. Numerical model 

Figure 1. Flow chart to optimize cooling pipe 
system 

In the numerical analysis, we consider only half of the numerical model 
because the conditions of the model are given symmetric with respect to the 
x-axis. 

2.3 Basis vector method 
When an optimization method is applied to the shape design problem, the 

basis vector method is adopted to decide the shape and position of cooling pipe, 
and to reduce the number of design variables. The basis vector method can pre- 
vent the mesh warping due to the boundary shape changes during optimization. 
In the basis vector method, an original shape vector and basis vectors need to 
be prepared. In general, a new coordinate G is generated from the following 
equation, 

n 

G = Go f C ~ i ( V i  - Go) (1) 
i=l 

where Go is an original shape vector, Vi is a basis vector, n is the number of 
basis vectors and a i  is a design variable, respectively. 

In this study, the new shape vector is calculated from the following equation, 

n non 



where non is the number of node in a numerical model and Vi corresponds to 
(vi - GO). 

Four kmds of basis vectors that include four design variables are prepared. 
Figure 3 illustrates the shape changes of the numerical model by using the basis 
vectors. 

(a) Inclined straight pipe (b) Curved pipe 

Figure 3. Examples of shape change using basis vectors 

2.4 Response surface approach [5,6] 
In the optimization problem using numerical analyses, when much calcula- 

tion time is required for one analysis, the design space may be approximated 
to optimize effectively. Some approximate optimization techniques have been 
developed, such as the response surface method (RSM), Kriging model, the ra- 
dial basis function (RBF) and so on. In this study, we have applied the RSM to 
predict the numerical results without a lot of analyses in optimization process. 

When the shape of numerical model is changed by using basis vector method, 
a few numbers of design variables have to be decided. In this study, the com- 
bination of these design variables is determined by an orthogonal array of the 
design of experiment (DOE) to be calculated efficiently under required relia- 
bility. And an orthogonal polynomial calculated by a regression model based 
on the array is regarded as the response surface. 

2.5 Evaluation function 
In a plastic injection molding, when the temperature distribution of melted 

plastic in a cavity is uniform and the cooling rate is slow, the generation of 
residual stresses is suppressed. Therefore, we introduce two kinds of quantities 
to evaluate these conditions. One is an average heat quantity Q,, defined by 
Eq.(3) to obtain uniform temperature distribution along the cavity surface. The 
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other is a deviation of heat quantity Qdev defined by Eq.(4) to measure the 
cooling rate during t end  in the molding die. 

where q,, and qdev are heat flows of the cavity surface nodes at unit time, tend 

is calculation time, k is thermal conductivity, A is an area of the cavity surface, 
Ti is a temperature of cavity surface node, T,,, is an average temperature of 
the surface and n is number of the nodes, respectively. 

After normalizing these two functions, an objective function summed up 
these functions with weighted coefficients is introduced to transform this multi- 
objective optimization problem into a single one. 

where wl and w2 are weighted coefficients. 

3. Shape optimization problem of cooling pipe system in 
plastic injection molding 

3.1 Optimum shape of cooling pipe system 

A simple design model of cooling pipe system (Figure 2) is considered to 
confirm the coolant flow effects between the different conditions, the Case 1 
and the Case 2, as mentioned above. The same initial conditions are assumed 
for the both cases. As the boundary conditions, a constant cool temperature is 
given for all area of cooling pipe in the Case 1. On the other hand, in the Case 
2 a constant velocity and temperature at inlet, a constant pressure at outlet and 
no slip condition at cooling pipe wall are assumed to consider the coolant flow 
in cooling pipe. 

The analytical models are made from the combination of the basis vectors 
based on the orthogonal array ~ ~ ~ ( 3 ~ ) .  Using 27 kinds of numerical results 
analyzed these models by the FEM, the response surface is constructed. 

The response surfaces in the design space are illustrated in Figs.4. These 
graphs show the relationship among the average heat quantity, the deviation of 
heat quantity and the transformed single objective function. By changing the 
coefficient values of wl and w2 in Eq.(5), a Parato front drawn by red symbol 
is obtained. 

The optimum shapes of cooling pipe systems shown in Figs.5 and 6 are 
obtained by using the response surfaces (Eq.(5)) and the mathematical pro- 
gramming method under the condition of wl = 0.5, w2 = 0.5. The optimum 



Figure 4. Response surface of Case 1 (left), Case 2 (right) 

shape of cooling pipe in the Case 1 shows round and symmetric as shown in 
Figure 5 because of the symmetry of simulation model. On the other hand, 
the shape is asymmetry and that the cooling pipe approaches the cavity toward 
outlet and goes away from the cavity toward inlet in the Case 2 (Figure 6). 

Figure 5. Optimum shape of Case1 

3.2 Discussions 

Figure 6. Optimum shape of Case2 

The optimum shape in Case 1 can be expected to reduce the differences of the 
temperatures distribution and to cool down fast on the cavity surface. Compared 
with the optimized model in Case 1, we can find clearly the difference of the inlet 
and outlet coordinate of the cooling pipe. When the coolant flow is considered, 
the coolant temperature of inlet side is higher than that of outlet side because of 
the absorption of heat. This will cause the nonuniform temperature distribution 
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in the die. From this reason, the asymmetry optimum shape in Case 2, has been 
obtained in order to make a temperature distribution uniformly. 

In Figs.5 and 6, the Parato fronts are obtained to optimize the objective 
function with the different values of the weights. The pipe shapes of these 
solutions in Figure 6 are illustrates in Figure 7. The trade off relationship 
between the average heat quantity Q,,, and the deviation of heat quantity Qdev 
is observed. From the shapes of Parato solution, we can recognize that it is 
necessary to make the position of inlet go away from the cavity for uniform 
temperature distribution. 

When the optimum results shown in Figure 6 are focused, the result of devi- 
ation of heat quantity is the minimum at the optimized results as shown Figure 
7. In Figure 7, the result of average heat quantity is not the minimum of objec- 
tive function, because the function value depends on the normalizing standard. 
However, changing the weighted coefficient, Parato front is obtained. There- 
fore, we consider the objective function and evaluation functions show a natural 
phenomenon in plastic injection molding. 

Figure 7. Shapes of parato solutions in Case2 

4. Conclusions 
A new approach to optimize the cooling pipe system,in the plastic injection 

molding taking account of the coolant flow has been developed. To confirm the 



coolant flow effect, we prepared a simple cooling pipe system model, and opti- 
mized the model with two different conditions. In the optimization processes, 
we defined the two kinds of quantities to evaluate the cooling process in the 
cavity of plastic injection die, and adapted the basis vector method to control 
the shape of cooling pipe system and the response surface method to optimize 
effectively. As a result, we obtained the different optimum shapes that appear 
the coolant flow effect. And the response surfaces using the optimizations ex- 
press the trade off relation ship between the cooling rate and the uniformity of 
the temperature distribution in the die. However, the optimum shape is lean 
to keep the uniformity compared with the cooling rate when two evaluation 
functions are treated at the same rate. However, we can obtain the parato front 
to change the weight of two functions. 
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Abstract This paper suggests an innovative design methodology of heat transfer system 
based on a so-called adaptive growth law, which is an essential optimum growth 
rule of branch systems in nature. The branch systems in nature can grow by adapt- 
ing themselves automatically to the growth environments in order to achieve better 
global functional performances, such as the maximal absorption of nutrition or 
sunlight in plants and the intelligent blood delivery of a vascular system in animal 
body. Thus, it can be expected that an optimum layout of heat transfer system 
would be obtained by the generation method based on the growth mechanism of 
branch systems in nature. First, the emergent process of branch systems in nature 
is reproduced in computer model by studying their common growth mechanisms. 
The branch systems are grown by the control of a so-called nutrient density so as 
to make it possible that the distribution of branches is dependent on the nutrient 
distribution. Then, the generation method is applied to the layout design prob- 
lem for heat transfer systems. Both the conductive heat transfer system and the 
convective heat transfer system are designed by utilizing the generation method 
based on the growth mechanisms of branch systems in nature. The effectiveness 
of the suggested design method is validated by the FEM analysis and by the 
comparison with other conventional optimum design methods. 

keywords: Layout Optimization, Cooling Channel, Branch System, Bionic 
Design 

1. Introductions 
Geometric forms (shapes and topologies) of branch systems in nature, such 

as lungs, vascular tissues, botanical tree (canopies, roots, leaves), etc., always 
show approximating a globally optimal performance that can minimize the 
costs of the construction and maintenance of the fluid transportation system 
under restraints of growth environment. So the branch systems are interested 
in modeling and visualizing not only by biologists but also by engineers. By 
studying the growth mechanisms of branch systems in nature, branch systems 
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of plants and animals have been simulated by some kinds of approaches [I]- [4]. 
On the other hand, development of more intelligent and optimum engineering 
systems are expected by utilizing the optimality of branch systems in nature, 
and some effort have been done on this issue. For example, a topology design 
optimization method to generate stiffener layout pattern for plate and shell 
structures has been suggested [5], in which a growing and branching tree model 
is applied. The effectiveness of the method is proved because discrete stiffener 
layout pattern rather than a vague material distribution can be obtained. 

In this paper, an innovative layout design methodology of heat transfer sys- 
tem by utilizing the optimality of branch systems in nature is suggested. The 
method bases on such essential characteristics of branch systems in nature that 
the branches can grow by adapting themselves automatically to the growth en- 
vironments and achieve better global functional performances, such as maximal 
absorption of nutrition or sunlight in plants and intelligent blood delivery of a 
vascular system in animal bodies. Thus, it can be expected that an optimum lay- 
out of heat transfer system would be obtained by utilizing the generation method 
based on the growth mechanism of branch systems in nature. First, optimality 
and growth mechanisms of branch systems in nature are studied, and a repro- 
duction approach of emergent process of branch systems is proposed. Branches 
are grown by the control of a so-called nutrient density so as to make it possible 
that the distribution of branches is dependent on the nutrient distribution. The 
growth of branches also satisfies the hydrodynamic conditions and minimum 
energy loss principle. If the so-called nutrient density in the generation process 
of branch system is referred to as the temperature in a heat transfer system, 
the distribution of branches is responsible to the distribution of cooling chan- 
nels. Because branch system can grow adaptively corresponding to the nutrient 
distribution in order to absorb the nutrition to the maximal extent, the cooling 
channel can be constructed adaptively by the control of the temperature so as to 
make it possible to achieve comparative uniform temperature distribution of the 
whole heat transfer system. Having the similar optimality of branch systems 
in nature, the constructed cooling channel can be designed flexibly under any 
complex thermal boundary conditions within any shapes of perfusion volumes 
to be cooled and will achieve good cooling performance. The design problems 
of both the conductive heat transfer system and the convective heat transfer 
system are studied, and the cooling performances of the designed heat transfer 
systems are confirmed being improved by carrying out the FEM analysis and 
by comparing with the results designed by other conventional design methods. 
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2. Reproduction of Emergent Process of Branch Systems 
in Nature 

It is necessary to reproduce the emergent process of branch systems in na- 
ture in order to apply the optimality of branch systems in nature to engineering 
design, thus a generation approach of the emergent process for a hierarchical 
dichotomous branch system being considered as a material or energy trans- 
portation system is studied. A certain distributed nutrition density is assigned 
in advance in the perfusion space to control the growth of branches to make it 
possible that the distribution of branches is dependent on the distribution of the 
so-called nutrition density. During the generation process of branch system, the 
nutrition density in the whole perfusion space decreases by growing branches 
and its distribution tends to be uniform. The prerequisites of constructing such 
branch system are briefly described as follows: 

1 Branching law stands for the relationship of radii between the parent 
branch and the daughter branches, which is adopted at every bifurcation 
point. For a dichotomous branch system, it is formulated as the following 

X X X  
T o  = r1 + 7-2 (1) 

where ro, rl and ~2 are radii of the parent branch and the daughter 
branches, as shown in Figure 1. The bifurcation exponent, A, is physi- 
ologically reasonable when it is in the range of 2 5 X < 3. Murray's 
law shows the energy loss for transporting material throughout the whole 
network can be made minimum when X = 3. 

2 Growing law relates to the growing direction and the growing velocity 
for a new branch, which is assumed to be dependent on the local nutrient 
distribution. A new terminal site is always positioned at the point with 
the highest nutrient density in the local growth space (vicinity) around 
the grown branches. If there is more than one such point in the local 
growth space, a point is selected by a pseudo random number sequence. 

3 The hydrodynamic conditions are assumed as that each terminal branch 
has the same flow and pressure so as to bathe the whole perfusion space 
evenly. The branches are assumed to be cylinders. Flows in the branches 
are assumed as fully developed laminar flow, so they obey Poiseuille's 
law formulated by the following Eq.(2). 

where Q is the volumetric flow rate, LIP is the pressure drop, r and 1 
are radius and length of the vessel, and v is the dynamic viscosity of the 
fluid. 



4 The volume of whole branch system is selected as the cost function, so 
the branch system is designed in such a way that the volume of it is 
minimized, 

n 

where ri, li  are radius and length of branch i, and n is the total number 
of branches. 

According to the above prerequisites, the growth process can be implemented 
as follows. A certain nutrition density distribution is assigned in a specified 
perfusion area in advance. The initial branches are grown, which satisfy the 
hydrodynamic conditions and a certain branching law. The local nutrition den- 
sities nearby the existent branches are updated. Then a new terminal site is 
selected at a point with the highest nutrition density in the growth area. If there 
is more than one point having the highest nutrition density, a candidate point 
is selected at random by a pseudo random number sequence. Therefore the 
density of branch distribution is dependent on the initial nutrition density of the 
perfusion area in order to absorb nutrition as much as possible. Next, the new 
terminal site is attached to the existent branches near it. For each attachable 
candidate branch, the bifurcation point is selected optimally with the objective 
of minimum volume of the whole network under the restraint of hydrodynamic 
conditions, and the new terminal site connects with the bifurcation point tenta- 
tively. The radius of the new branch is decided according to Poiseuille's law, 
and radii of all parents of the new segment are updated according to the branch- 
ing law. Then the connection is dissolved but the volume of whole network 
for the connection is recorded. By comparing volumes of all possible tenta- 
tive connected topologies, a connected topology with the minimum volume is 
finally adopted permanently. The growth process will stop when the average 
nutrition density in the perfusion area cannot be decreased anymore. 

Figure 2 shows the simulation result of the growth process for a 2-dimensional 
branch system filled up a circular space. The initial nutrition density is distrib- 
uted uniformly, as shown in Figure 2(a). Murray's law is adopted at each 
bifurcation. Figure 2(b)-(d) show the emergent process of the branch system, 
in which the total branch number of the finally generated branch system is 6971. 
It is found that the branch system can fill up the whole specified space and the 
distribution of the branches is dependent on the initial nutrition density in the 
original space, which is almost uniform. During the generation process, a trunk 
grows at first, and some boughs grow spreading the whole perfusion area at 
very initial period. However, a number of twigs grow finally. The simulated 
branch system has both thicker and thinner size levels, which is similar to the 
branch systems in nature, in which the thicker ones convey long-distance ma- 
terial transportation, and the thinner ones exchange material with environment. 
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(a) Un ifo rm (b) Number of 
nutrient density bmnch=501 9 

(d) Number of (c) Number of 
branch =6971 branch =I001 

Figure I .  Geometry of a dichoto- 
mous branch system 

Figure 2. Growth process of branch system under uni- 
formly distributed initial nutrition density (X=3.0, Volume 
rate=1.60%) 

If the circular perfusion area is considered as a plate with the thickness of 1/14 
of its radius, the volume rate of the branch system, i.e., the ratio of the branch 
volume to the whole plate volume, is 1.60%. 

(a) FEM model (b) Temperature field 
(Volume rate=9.71%) Tm=57.5 5°C 

Figure 3. FEM model and temperature field for a circular plate with a natural branch-like 
conductive cooling channel under uniform heat-generating rate 

In conclusion, it is said that the suggested generation method can grow branch 
systems to fill up any specified perfusion areas with arbitrarily distributed initial 
nutrition densities, and the generated branch systems are qualitatively similar 
to the branch systems in nature. 



3. Layout design of Heat Transfer System 
If the so-called nutrient density in the generation process of a branch system 

is referred to as the temperature in a heat transfer system, the distribution of 
branches can be considered corresponding to the distribution of cooling chan- 
nels. Because the branch system can grow adaptively depending on the nutrient 
distribution in order to absorb the nutrition to the maximal extent, the cooling 
channel can be constructed adaptively by the control of the temperature so as 
to make it possible to achieve comparatively uniform temperature distribution 
of the whole heat transfer system. Therefore, the generation method based on 
the growth mechanism of branch systems in nature can be applied to the layout 
design of cooling channels in the heat transfer systems. 

First, the layout of a conductive heat transfer system is designed and its 
cooling performance is analyzed. The problem is stated as: "a finite-size volume 
is to be cooled through a small patch (heat sink) located on its boundary, in which 
heat is being generated at every point. "A finite amount of high conductivity 
(k,) material is available. Determine the optimum distribution of material kp 
through the given volume such that the temperature distribution of the whole 
volume is as uniform as possible." The natural branch-like conductive cooling 
channel is constructed based on the corresponding original branch system, in 
which its cross-section is assumed to be a rectangle with the same thickness 
as the plate. The width of the channel, however, is assumed to be the same 
diameter as the corresponding branch in the branch system. The ratio of thermal 
conductivity of the high conductivity material (k,) to the low conductivity (ko) 
is assumed as ,& = kp/ko >> 1. A circular plate with the ratio of thickness to 
diameter of 0.01 is considered as the finite-size volume to be cooled, in which 
the heat generates at every point with the uniform volumetric heat-generating 
rate q'" = I O ' W / ~ ~ .  The layout of the conductive cooling channel made of a 
high conductivity material (k,) is based on the original branch system shown in 
Figure 2(d), in which some branches with smaller cross-sections are omitted for 
the simplicity. It is noted that the distribution of the volumetric heat-generating 
rate is identical to that of the so-called nutrient density in the generation process 
of the original branch system, which is uniform as shown in Figure 2(a). The 
ratio of the thermal conductivities of the high conductivity material (k,) to the 
low conductivity (ko) is assumed to be lo4.  The temperature at the heat sink 
located on the boundary is set as Tmi, = 10 "C. The whole structure is insulated 
from the environment. Figure 3(a) shows the FEM model generated by some 
imaged section slide by Voxelcon. The volume rate of the cooling channel 
is 9.71%. Figure 3(b) illustrates the temperature field of the whole plate, in 
which the red parts stand for the hot spots, while the blue parts stands for the 
comparative cool spots. The maximal temperature is T,,, = 57.55 "C. It is 
found that the hot spots are distributed over the whole volume. 
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Next, the layout of a convective heat transfer system is designed by the gen- 
eration method based on the growth mechanisms of branch systems in nature. 
The difference between the convective and the conductive heat transfer systems 
is that the coolant flow is available to remove the heat in the convective heat 
transfer system. The problem can be stated as: "construct an optimum convec- 
tive cooling channel in a specified volume applied a certain distributed heat flux, 
in which coolant flows through the channel to remove the heat." A branch-like 
convective cooling channel is constructed inside a flat plate, which is based on 
the corresponding original branch system. The diameter of each segment in the 
cooling channel is assumed to be identical to that of the corresponding branch 
in the original branch system. A certain distributed heat flux is applied on the 
top surface of the plate, the bottom surface is insulated from the environment, 
and the circumference is on the forced air convection. Coolant with a certain 
volumetric flow rate is flown through the channel to remove the heat. The vol- 
ume to be cooled is assumed to be made of beryllium-copper alloy, thermal 
conductivity of which is set as k = 260 W/mK. The coolant flowed through the 
cooling channels is assumed as water, and its temperature at inlet is assumed 
as 20 O C .  

Actually, the problem is a transient heat conduction problem between the 
solid and coolant in the channel. However, because our goal here is only 
to confirm the heat conduction efficiency of the heat transfer system with a 
convective cooling channel, the problem is simplified as a steady-state heat 
conductive problem. However, it is necessary to consider the energy balance 
in the system responsible for the fluid convection. Because the temperature of 
coolant becomes higher and higher by passing through the cooling channel from 
inlet to outlet, the energy balance due to the fluid convection can be considered 
approximately as the distribution change of the temperatures at the channel wall. 
The temperature difference at the channel wall between the inlet and outlet of 
segment i can be evaluated approximately by the following equation. 

where q is the heat flux applied on the channel, p, and Cc are density, specific 
heat of coolant, respectively. And uci is the coolant average velocity of branch 
i. 

Figure 4 shows the FEM models and temperature fields of three circular plates 
with branch-like convective cooling channels resulted from different branch- 
ing laws. The branch-like convective cooling channels in the heat transfer 
systems are constructed based on the corresponding branch systems shown in 
Figure 2(d), in which the bifurcation exponents X are 3.0, 2.5 and 3.5, respec- 
tively. The thickness of each plate is assumed to be 1/14 of its radius. The 
volumetric flow rate of coolant at the inlet is assumed Q = 8 x m3/s , 



and the heat flux applied at the top surface of the plate is set as q = 5.0 x lo5 
w/m2.  The left figures in Figure 4 are the middle planes of the FEM models, in 
which the volume rates of cooling channels are 1.77% for X = 2.5, 1.28% for X 
= 3.0 and 1.32% for X = 3.5, respectively. The right figures in Figure 4 show the 
temperature fields that are scaled by the maximal temperature Tma, = 44.67 "C 
for X = 2.5. And the maximal temperatures are Tmax = 33.94 "C for X = 3.0 
and T,,, = 34.20 "C for X = 3.5, respectively. It is easy to find that the 
case of X = 3.0 results the most uniform temperature distribution, and the most 
non-uniform one is the case of X = 2.5. It is noted that the volumes of the 
convective cooling channels from small to large is put in order as X =3.0, 3.5 
and 2.5, which is the same sequence with the uniformities of temperature distri- 
butions. As a result, Murray's law (A  = 3.0) is the most effective branching law 
for constructing the branch-like convective cooling channel system. The reason 
is that Murray's law is derived from such principle that the energy loss due to 
the viscous friction throughout the whole network is minimal, that provides the 
easiest way for the coolant to pass. 

Vo kme rate=1.77% T,=44.67' C Volume rate=1.28% T,=33.94" C 

( a ) 1 = 2 . 5  (b) A= 3.0 

Volume rate=1.32% T,=34.20° C 

(c) A =  3.5 

Figure 4. FEM models and temperature fields for heat transfer systems with branch-like 
convective cooling channels resulted from different branching laws 

In order to validate the effectiveness of the suggested generation method, 
the cooling performances between the natural branch-like cooling channel de- 
signed by the suggested generation method and the horizontal-vertical tree-like 
cooling channels constructed by the constructal theory proposed by Bejan [6] 
are compared. 
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The unique principle of the constructal theory for designing the conductive 
cooling channel is: "every portion of the given volume can have its shape 
optimized such that its resistance to heat flow is minimal". By utilizing this 
principle, the cooling channel is determined in a sequence of steps consisting 
of shape optimization and subsequent construction. It starts from the smallest 
building block (elemental system) and proceeds toward larger building block 
(assemblies). 

Figure 5(a) shows the FEM model and the corresponding temperature field of 
a horizontal- vertical tree-like conductive heat transfer system till second con- 
struction. The ratio of the thermal conductivities of the high-conductivity ma- 
terial to the low-conductivity material is assumed to be k = k p / k o  = 3333.33. 
The volumetric heat-generating rate is set as qfff = l o5  JV/rn3, and is distributed 
uniformly over the whole volume to be cooled. The volume is a square plate 
with the ratio of the thickness to the edge length 0.01, which is derived from 
the sequence of shape optimization and construction by the constructal theory. 
The temperature at the heat sink end is set as 10 "C, and the whole structure is 
insulated from the environment. As shown in Figure 5(a), the volume rate of 
the cooling channel, i.e., the k ,  material in which allocated in the whole volume 
is 9.47%, and the maximum temperature is T,,, = 58.25 "C. 

FEM m d e l  Temperature field 

(a) Horizontal-vertical tree-like conductive 

FEM m d e l  Terrperature f~ Id 

(b) Natural bmnch-like conductive cooling 

Figure 5. Comparison of horizontal-vertical tree-like and natural branch-like conductive 
cooling channels 



According to the geometries of the heat transfer system with the horizontal- 
vertical tree-like cooling channel, a corresponding branch system is generated 
on a square perfusion area applied a uniformly distributed nutrient density. Fig- 
ure 5(b) shows its FEM model and the corresponding temperature field. The 
volume rate of the cooling channel is 9.62%, which is very close to that of the 
horizontal-vertical conductive cooling channel. And the maximum temperature 
is T,,, = 53.32 OC, which is a little lower than that of the horizontal-vertical 
tree-like cooling channel. It is found that hot spots are distributed over the 
whole volume to be cooled in both cases, so it is said that both conductive 
cooling channels can achieve good cooling performances. However, it should 
be noted it is just because the thermal boundary conditions are very simple 
(uniformly distributed heat-generating rates are applied), the simple and regu- 
lar distributed conductive cooling channel, i.e., the horizontal-vertical tree-like 
conductive cooling channel, is available and effective. If the heat-generating 
rate is applied non-uniformly, it is difficult for the constructal theory to design 
effective conductive cooling channel, while the flexible natural branch-like con- 
ductive cooling channel can be designed adapting to the arbitrary complex ther- 
mal boundary conditions. Moreover, the design volume to be cooled can not 
be changed arbitrarily and be defined in advance when the constructal theory 
is adopted because of the definite time arrow of the construction from small 
to large. While the design volume can be defined in advance and the natural 
branch-like conductive cooling channel can be designed to fill up the volume 
with any shape by the suggested generation method. Therefore, it can be said 
that the suggested generation method is more powerful for designing the con- 
ductive cooling channel and the designed cooling channel can remove the heat 
generated in the matrix effectively. 

4. Conclusions 
By studying the growth mechanisms of branch systems in nature, an inno- 

vative layout design methodology of heat transfer systems is suggested in this 
paper. Having the similar optimality of branch systems in nature, the heat 
transfer system for cooling can be designed flexibly under any complex ther- 
mal boundary conditions within any specified shapes of perfusion volumes to 
be cooled, and can remove heat generated in the volume effectively. The ef- 
fectiveness of the suggested design method has been validated by carrying out 
the FEM analysis and by comparing with other conventional design methods. 
It is expected that the suggested method can be applied to some more practical 
engineering applications, such as cooling channels in injection moulds, heat 
sinks in electronic packages, and so on. 
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Abstract In order to obtain maximally innovative and successful product designs, the uti- 
lization of optimization strategies at the product deslgn planning stage is of prime 
importance, and the methods proposed in this paper enable multiobjective opti- 
mization technologies to be effectively applied. The necessity and effectiveness 
of utilizing optimization techniques at the product design planning stage are first 
explained, and the features that this requires are then clarified. Optimization 
solutions provided at the product design planning stage, while far from final, 
can nevertheless be used to obtain guidelines for more preferable product de- 
signs. For this purpose, even if characteristics evaluated at the product design 
planning stages are simplified andlor idealized, the interrelationships among all 
related characteristics should be simultaneously and thoroughly explored. The 
successful application of optimization techniques at the product design planning 
stage requires the rapid presentation and evaluation of a variety of alternative 
designs, a deeper understanding of the reasons for the optimized designs that are 
developed, and breakthrough of the initial optimized design solutions, so that the 
most effective design can ultimately be implemented in a manufactured prod- 
uct. This paper proposes multiobjective design optimization methodologies and 
procedures, utilized at the product design planning stage, to achieve these goals. 

keywords: Product design planning stage, Multiobjective optimization, 
Pareto optimum solutions, Comparison of alternative designs, Hierarchical op- 
timization problem, Rapid evaluation, Deeper insight into design solutions 

1. Introduction 
Today's rigorous manufacturing environments require the application of op- 

timization techniques from wider points of view. To accomplish this, strategic 
utilization of optimization techniques at the product design planning stage, a 
process far upstream of product manufacturing, is essential. In this paper, the 
significance of conducting optimization at the product design planning stage 
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is first clarified. Next, problem areas concerning the use of optimization tech- 
niques at the product design planning stage, and desirable features that such 
techniques should offer, are described. 

At the product planning stage, principal product performances for the prod- 
uct should be considered and evaluated, and the conflicting relationships among 
the characteristics should be quickly but roughly evaluated. Many alternative 
designs are usually generated and compared at this stage and, for the most part, 
multiobjective optimization methods are applied. In multiobjective optimiza- 
tion problems, a Pareto optimum solution set, namely a set of feasible solutions 
for each of which there exists no other feasible solution that yields an improve- 
ment in one objective without causing degradation in at least one other objective, 
is obtained to evaluate conflicting objectives of the design optimization prob- 
lem at hand [l] [2]. In order to effectively apply multiobjective optimization 
methods to the product planning stage, new methods need to be developed, 
to incorporate fundamental improvements in the multiobjective optimization. 
This paper presents methodologies for executing optimization at the product 
design planning stage, and several applied examples are given. Several meth- 
ods developed by the author and his colleagues are organized and presented so 
that they can be effectively applied at the product design planning stage. 

2. Significance of Optimization at the Product Design 
Planning Stage 

2.1 Features of the product design planning stage in 
manufacturing processes 

Figure 1 shows the sequence of manufacturing processes, where the product 
design planning is the first step. The product design planning, located furthest 
upstream, determines practically all of the downstream manufacturing process 
details. Current design environments require careful consideration not only of 
increasingly demanding requirements for product performances, qualities, and 
product cost, but also many other factors such as the product's environmental 
impact, lifecycle and recycling, and safety. Aggressive and relentless compe- 
tition among companies developing new products under such circumstances 
makes the application of optimization strategies throughout product manufac- 
turing processes a practical requirement. Particularly important to successful 
manufacturing is the application of optimization methods that start from the 
initial planning stages of product design. 
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I Product design planning I 

I Product design ( 

and evaluation 

I Manufacturing I 

Marketing ?i 
Figure 1. The sequence of manufacturing processes 

2.2 Features of design optimization applied at the product 
design planning stage 

The most effective application of optimization methods is based on careful 
inquiry and consideration of the features of the product design planning stage. 
This stage is more or less equivalent to the conceptual design, or fundamen- 
tal design stage, where details of the product design have not yet been deter- 
mined but various conceptual designs are considered, compared, and evaluated. 
This is when the design specifications for the product and its requirements and 
characteristics are usually given. Also, the principal characteristics used for 
evaluating the product performances can be defined. At the product design 
planning stage, the product performance and the product manufacturing cost 
for the entire product should be roughly evaluated even if the estimated values 
of the characteristics are imprecise. 

At the product design planning stage, all characteristics should be system- 
atically evaluated, and selection of the design candidates from among many 
design alternatives should be conducted, using an optimization procedure. Mul- 
tiobjective optimization techniques can be effectively applied to systematical 
evaluations of the characteristics being regarded. 

Solutions of optimization at the product design planning stages can be used 
for obtaining guidelines for product designs. For the purposes, the facts that 
characteristics considered at the product design planning stages may be simple 
and lor idealized can be acceptable. But, the relationships among the all related 
characteristics should be totally inquired. 

When existing design solutions are available, searching methods that can 
achieve breakthrough or improved solutions are needed. 



Figure 2 shows the conflicting relationship between two performance char- 
acteristics, f l  and f2. A larger value is preferable for each of these performance 
characteristics. The shaded area corresponds to the feasible region formed by 
design solutions that can be realized using present technologies and knowledge. 
The line PQ corresponds to the Pareto optimum solution set of global optimum 
solutions, achieved by concurrent optimization of all related characteristics. 
Product designers generally look for practical design solutions on a Pareto op- 
timum solution line. From the Pareto optimum solution set, the most suitable 
solution is selected by considering the design requirements and the product 
environments. 

Figure 2. Concept of the proposed methods 

If an alternative design results in a new optimum solution line, such as P'Q' 
shown in Fig.2, it can represent an improved new Pareto optimum solution 
set line. The display of such Pareto optimum solution sets is effective since 
designers can quickly understand the features of entire solutions. 

2.3 Requirements for applying optimization techniques at 
the Product Design Planning Stage 

In order to apply optimization techniques at the product design planning 
stage, the following points should be realized: 

1 Since designers usually have a wide range of initial ideas, numerous al- 
ternative designs should be quickly formulated and effectively compared 
with each other, so that the most suitable small number of designs can be 
selected. 

2 The many performance characteristics of the designs at hand must be 
concurrently evaluated and optimized. 
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Multiobjective optimization methods that incorporate new and improved ad- 
vanced techniques can be applied to achieve the foregoing points. The details 
of such methods are explained below, along with some applied examples that 
illustrate their application. 

3. Methodologies of Design Optimization at the Product 
Design Planning Stage 

3.1 Comparison of many alternative designs 
In the first method, many design alternatives in the multiobjective functions 

space are displayed in detail, and a relational tree diagram of design alternatives 
is shown to aid a deeper understanding of the optimized solutions [3]. To explain 
the process, the design of industrial multi-link manipulators that are used to 
transport an object in a workspace within a given operational time is used. 

Alternative designs are constructed from a group of modules. Basic module 
is one link mechanism with a motor corresponding to a minimum unit of linked 
mechanisms. To create systems of practical complexity, we add design variables 
and increase the number of degrees of freedom. Here, two kinds of operators, 
operators 1 and 2, that control modules during the process of constructing a 
more complex system are introduced. Operator 1 adds a new module to the 
group of modules that make up the system. The degrees of freedom of the 
system are increased, and higher functionality can be realized. Operator 2 is 
an operator that alters the properties of a given module. Concerning operator 
2, modification of link shapes by operator 2-1 and of the number of joints by 
operator 2-2 can be used any number of times. 

Examples of system modifications by these operator actions are shown in 
Fig.3. The change from system fl to system f2 is an example where operator 
I is applied to add a module. The linked mechanism is changed from having 
one degree of freedom to two degrees of freedom for the serial drive type 
mechanism (manipulator). The change from system fi to f3 corresponds to 
the modifications of the internal variables of links. The action of operator 2-1 
where a joint is added to a link produces a parallel drive type manipulator having 
two motors on a pedestal. By using these two kinds of operators, a variety of 
systems can be expressed using combinations of modules. 

The requirements set by the user are: 1) minimization of consumed energy 
and 2) maximization of the operational simplicity of the link mechanism. The 
user's requirements concerning the amount of energy consumed and the dy- 
namic manipulability are used as the criteria for this product design. 

The consumed energy is calculated from the magnitudes of torques applied 
to the joints. The requirement concerning the consumed energy is expressed 
by minimizing the summation fl of the consumed energy of each motor over 
all motors, while the manipulability requirement is expressed by minimizing 
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Figure 3. Examples of operator actions 

the summation f2 of the reciprocal of the dynamic manipulability measure w,jj 
over the all measuring points of the system. The objective functions f l  and 
f2 concerning the consumed energy and the manipulability are respectively 
formulated [3]. 

Fig.4 shows an example of a tree diagram for a design that was constructed 
and later stored in a database. Fig.5 shows changes in Pareto optimum solutions 
for the example. The history of the tree formation shown in Fig.4 is explained 
as follows. Operator i ( i=l ,  2-1, and 2-2) between various nodes represents 
operators active in the generation of subsequent systems. Operator type 1 alters 
the combination of modules, while type 2 operators change internal variables. 
Here, operator 2-1 changes the number of joints of the link, while operator 2-2 
changes the position of the center of mass. Both operators 2-1 and 2-2 change 
internal variables of a given module. 

S, 

1 operator 1 

operator J 2-1 ' y a m r  2-2 

s3 s4 

Figure 4. Tree form data of design solutions 

First of all, from a unit link mechanism S1, a serial drive type manipulator S2 
was obtained by the addition of a module. Next, the action of operator 2-1 upon 
S2 generated S3 , a parallel type drive manipulator, while applying operator 2-2 
to S2 yielded S3, in which the center of mass was changed by changing the 
cross-sectional shapes of the links. After evaluation of S3 and Sq , S5 was 
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Operational cost (W/lOOO) 

Figure 5. Changes in Pareto optimum solutions 

obtained by applying operator 2-2 to S3. But S4 became a dead-end, since the 
action of any operator upon Sq generated an identical system. For the same 
reason, Ss became a dead-end. Ultimately, the tree-form data shown in Fig.4 
was obtained. 

Next, the changes in Pareto optimum solutions during the design generation 
processes are shown in Fig.5. Fig.5 is a space showing two criteria, f l  and fi , 
where the Pareto optimum solution set for each generated system is displayed. 
Since smaller magnitudes are preferable for each of the criteria, the design 
solution near the origin of the coordinates in the criteria space shown in Fig.5 
is more preferable. For S2 , features of optimized results including discrete 
design variables of four kinds of motors are displayed for each kind of motor. 
For each of the other systems, the best Pareto optimum solution is shown. It 
can be understood from Fig.5 that the order of preferable solution lines is S5, 
S3 ,S4, and Sz . 

At this time, examining the generational history represented by the tree form 
diagram shown in Fig.4 will aid understanding the solution sequence, since the 
origin of the obtained preferable solution can be seen. From Fig.5, the optimum 
solution set for the design problem being regarded is S5. The design system is 
a parallel drive type manipulator having two links. 

3.2 Concurrent evaluations and optimization of related 
performance characteristics 

Next, product performances that are related to the product design are con- 
currently optimized at the product design planning stage. For this purpose, a 
hierarchically decomposed structure of multiobjective optimization problems 



having multiple performance characteristics is displayed, and corresponding 
relations among hierarchical Pareto optimum solutions are obtained to aid a 
deeper understanding of optimized solutions [4] [5]. A hierarchical multiob- 
jective optimization method is one in which multiobjective optimization models 
are hierarchically constructed. 

Characteristics expressing product performance are here included in the ob- 
jective functions when the multiobjective optimization problem is formulated. 
The characteristics are here called "performance characteristics". When each 
characteristic in a group of characteristics has individually different optimum 
design solutions, the characteristics of the group will have conflicting inter- 
relationships during the optimization of the system as a whole. Generally, 
the group of characteristics included in the objective functions has conflicting 
interrelationships. 

(i) Hierarchical construction of optimization problems 
In the first stage of the proposed product design optimization method, each 

performance characteristic in the group of product performances is decomposed 
into simpler basic characteristics according to its structure. Alternatively, sim- 
pler characteristics are extracted from performance characteristics, to accom- 
modate the specific features, or difficulties, of the particular design problem. 
Decomposition and extraction techniques are sequentially applied until the char- 
acteristics become sufficiently simple to use in the next stage of the procedure. 
The decomposed and extracted characteristics are placed in hierarchical lev- 
els that are below those of the original characteristics. The decomposed or 
extracted characteristics are here simply called "characteristics" to distinguish 
them from performance characteristics. 

In this research, the decomposed or extracted characteristics and design vari- 
ables are ordered in a hierarchical structure, creating a hierarchical display of 
system components, based on the clarification of input and output relationships 
among the components comprising the system. This ultimately provides an 
easily understandable global view of the system as a whole, such as is shown in 
Fig.6. The construction of optimization strategies is then based on this global 
structural model. 

Characteristics on the same hierarchical level have different input variables. 
The set of characteristics sharing common input variables is denoted as a basic 
optimal unit group. 

In Fig.6, characteristics f7 and f8 have common design variables, vector dl 
, while characteristics fg and flo have common design variables, vector d:, . In 
such cases, f7 and f8 , and f9 and fio are respectively unified as basic optimum 
unit groups. f 3  and f4 have common input variables, namely f7 , fs , fg and 
flo . In such cases, f3 and f4 are unified as a basic optimum unit group at a 
higher hierarchical level. Characteristics existing in the same basic optimal unit 
group are essentially simultaneously optimized as a multiobjective optimization 
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Figure 6. Hierarchical construction of the optimization problem 

problem. Optimizations start at the bottom level of the basic optimal unit groups, 
for example, f7  and f8 , and then proceed to the higher levels. Basic optimum 
units existing at the same hierarchical level can be optimized separately or 
concurrently as needed, reducing the required computation time. 

The Pareto optimum design solutions obtained in a basic optimal unit group 
are included in the input variables for the optimization of basic optimal unit 
groups located at higher levels along the decomposition path. Here, design 
solutions at discrete points on the Pareto optimum solution set are transferred 
for use in upper level optimizations. The Pareto optimum solutions obtained 
by each optimization are added one after another, to obtain Pareto optimum 
solutions for the whole basic optimal unit group. Finally, the Pareto optimum 
solutions at the top hierarchical level are achieved. 

(ii) Deeper insight into the results of design optimization 
The results derived from the design optimization are only solutions obtained 

based on the initially given formulations. Even if multidisciplinary optimiza- 
tions are applied, it is impossible to include all the product design factors in 
the initial formulations. Optimization methods should not simply be used just 
to obtain final design solutions to the problem at hand, but also for effectively 
and rationally obtaining candidate design solutions for further design inves- 
tigations and improvement. The information and knowledge obtained by the 
design optimization should, ideally, be used as investigational data for further 
design improvements. 



One of the advantages of the hierarchical optimization method proposed in 
this paper is that it allows explicit investigation of Pareto optimum solutions at 
the lower hierarchical levels, leading to deeper insight into the results of design 
optimization and improved optimization formulations so that superior design 
solutions can be obtained. 

Designers can assess the corresponding relationships between a design so- 
lution selected from the Pareto optimum solution set at the highest hierarchical 
level of the optimization, and a design point on a Pareto optimum solution set 
at a lower hierarchical level. Fig.7 shows the correspondence of various design 
solution points on the Pareto optimum solution set curves at different hierar- 
chical levels. In Fig.6, BOU7 is composed of characteristics fl and f i .  Point 
A on the BOU7 Pareto optimum solution curve corresponds to both point B 
on the BOU5 Pareto optimum solution curve and point C on the BOU6 Pareto 
optimum solution curve. Furthermore, at the lower hierarchical level, point 
A corresponds to point D on the BOU1, point E on the BOU2, point F on 
the BOU3, and point G on the BOU4 Pareto optimum solution curves. Such 
detailed clarification of corresponding design points is a useful and important 
feature of the proposed method. 

Figure 7. Correspondence of design solution points 

In Fig.7, given the conflicting relationship of the essential characteristics 
f 9  and f lo  at the lowest hierarchical level of the optimization problem, the 
breakthrough design alternative that yields the improved Pareto optimum so- 
lution shown by the dashed line R'S' can now be considered. When the new 
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f9/ f io Pareto optimum solution is applied during further optimization, a new, 
enhanced Pareto optimum solution line for performance characteristics f l  and 
f2 at the highest hierarchical level is obtained, indicated by the dashed line P'Q' 
[dl [5l. 

4. Concluding Remarks 
In current product design scenarios, rapidly changing customer preferences 

make reductions in product developmentJdesign time a practical necessity for 
many companies. Furthermore, competition among companies for products that 
can be offered at lower cost, while providing better performance and quality, 
higher reliability, and so on, is relentless and ongoing. Since product cost and 
product performances/characteristics are essentially determined at the product 
planning stage, the success or failure of product development depends on how 
appropriately optimization methods can be applied at this stage. As explained 
in this paper, many alternative designs should be generated and quickly com- 
pared at the product planning stage, and the relationships among associated 
characteristics should be effectively evaluated. The application of multiobjec- 
tive optimization methods where Pareto optimum solution sets are obtained and 
displayed on the characteristics space can be useful and effective. 

The methods proposed in this paper, based on the use of particularly so- 
phisticated multiobjective optimization methods, can be effectively used for 
comparison of many alternative designs and concurrent evaluations of related 
performance characteristics. 
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ON THE NUMERICAL SOLUTION 
OF STOCHASTIC OPTIMIZATION PROBLEMS 
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Abstract We introduce the stochastic linear programming (SLP) model classes, which will 
be considered in this paper, on the basis of a small-scale linear programming 
problem. The solutions for the various problem formulations are discussed in 
a comparative fashion. We point out the need for model and solution analysis. 
Subsequently, we outline the basic ideas of selected major algorithms for two 
classes of SLP problems: two-stage recourse problems and problems with chance 
constraints. Finally, we illustrate the computational behavior of two algorithms 
for large-scale SLP problems. 

keywords: stochastic linear programming, numerical methods. 

1. SLP problem formulations 
Our starting point is a simple deterministic linear programming (LP) pro- 

duction problem which serves for illustrating various model formulations in 
stochastic linear programming (SLP). Two kinds of raw materials are used for 
producing a single good, and we consider a single planning period. The LP- 
formulation for minimizing costs reads as 

Costs: z =  2x1 + 3x2 j m i n  
Capacity: zl + x2 5 100 
Demand: a1 XI + a2 22 2 b (1 

51, 22 > 0 

where XI and 22 denote the amounts of raw materials to be used for the pro- 
duction; these are our decision variables. The overall storage capacity for the 
raw materials is 100, and the prices are 2 and 3 in some monetary unit, respec- 
tively. b denotes the demand for the product whereas a1 and a2 stand for the 
productivity factors of the two raw materials, respectively. 
al, an, and b will be considered as parameters. Choosing a1 = 5, a2 = 8, 

and b = 640, we get the solution xi = 0, x; = 80, z* = 240. Note that in 
this solution the storage capacity is not fully utilized and only the second raw 
material is used for the production. 

Please use the following format when citing this chapter: 
Author(s) [insert Last name, First-name initial(s)]; 2006, in IFIP International Federation for Inform- 
ation Processing. Volume 199, System Modeling and Optimization. e d ~ .  Ceragioli F., Dontchev A,. 
Furuta H.; Marti K., Pandolfi L., (Boston: Springer), pp. [insert page numbers]. 



In the sequel, we will assume that the parameters a l ,  a2, and b are stochasti- 
cally independent, normally distributed random variables with the probability 
distribution not depending on X I  and x2: a1 - N ( 5 , 0 . 2 ) ,  
a2 - N ( 8 ,  0 .6) ,  and b - N ( 6 4 0 , 1 4 ) .  The question arises, how to inter- 
pret (1) under such circumstances. 

1.1 First idea: the expected value problem 
The simplest idea is to replace the random parameters by their expected 

values E [ a l ]  = 5,  E [ a 2 ]  = 8, E[b] = 625 and solve the resulting deterministic 
LP. In our case, this yields the solution discussed in the previous section. 

A clear drawback of this approach is that we get the same solution for all 
probability distributions having the same expected value. Unfortunately, due 
to its simplicity, the expected value problem is widely used in practice as a 
substitute of the stochastic problem. As we will see later, the expected value 
solution behaves in our case extremely badly, when talung the true stochastic 
nature of the problem into the account. 

1.2 A robust interpretation: "fat" solutions 
The next idea is to take problem (1) as it stands, with each of the realizations 

generating a constraint. This idea is due to Madansky who termed the solution 
obtained this way as "fat solution". Having continuous distributions with an 
unbounded support, we arrive at a problem with infinitely many constraints, and 
have no chance to get a feasible solution. Thus, as a next step, let us replace the 
original distribution with an empirical one. Discretizing the distribution with 
( a l ,  aa, b) - ( 9  x 9 x 9 )  = 729 and with -- (5  x 5 x 5 )  = 125 realizations, 
the problem turns out to be still infeasible. Finally, taking the rather crude 
discretization with ( a l ,  a2, b) - ( 3  x 3 x 3)  = 27 realizations we get an optimal 
solution. This illustrates the main drawback of the approach: typically we have 
no feasible solutions for the reformulated problems. Another drawback is that 
instead of the probability distribution only the support of the distribution enters 
the model; we obtain the same solution for any two probability distributions 
having the same support. 

1.3 Chance constraints 
Regarding the stochastic demand constraint in (I),  the next idea is to evaluate 

the quality of a decision by computing the probability of the event that the 
constraint inequality holds. Prescribing the probability on a high level leads to 
chance constrained problems (or probabilistic constrained problems). In our 
case, we get a chance constrained problem by replacing the demand constraint 
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in (1 )  by the probability constraint 

with a being a high probability level. We have solved our example with prob- 
ability levels a = 0.95 and a = 0.99. Note that positive values of the quantity 
C(x l ,  x 2 )  := b - a1 xl  - a2x2 represent unfulfilled demands. We interpret 
these as losses. Thus our chance constrained model provides a solution, for 
which the probability of a loss is small (1  - a). Nevertheless, losses my occur, 
and for the case when losses occur, chance constrained models have no built-in 
facilities for controlling the size of a loss. 

1.4 Integrated chance constraints and CVaR constraints 
Constraining the size of the expected loss leads to models with integrated 

chance constraints. In our case we obtain a model of this type by replacing the 
demand constraint in (1 )  by the constraint 

with yicc being a maximum tolerable loss and u+ = max(0 ,  u) for any real 
number u. In our computations, we have chosen yicc = 5 and have discretized 
the probability distribution with ( a l ,  an, b) ,-., (10 x 10 x 10) = 1000 realiza- 
tions. 

A related idea gaining increasing importance in financial applications, is 
based on conditional value-at-risk (CVaR). In our continuously distributed 
case, the idea can be interpreted as constraining the expected loss, given that 
it exceeds the a-quantile of the loss, V a R , ( c ( x l ,  x 2 ) ) .  In our example, the 
demand constraint in (1) is substituted by the constraint 

with ycvaT being a maximum tolerable CVaR value. Although in our normally 
distributed case the problem can equivalently be formulated as a nonlinear pro- 
gramming problem, we have discretized the probability distribution as before 
and took yCvaT = 5 in our computations. We have chosen the probability level 
as a = 0.95. 

1.5 Twestage recourse model 
We introduce penalty costs both for [ ( x l ,  x2) = b - a lx l  - ~ 2 x 2  < 0 and 

for C(x l l  x 2 )  > 0 and consider the random variable 
Q(x1,  x2; a11 a2, b) = 



where the penalty costs of 7 arise if the demand is not fulfilled and the costs of 
2 stand for overproduction. The idea is to evaluate solutions via the expected 
overall costs. The two-stage recourse model arises from (1) by augmenting the 
objective function by the expected costs, leading to 

and by dropping the demand constraint. Note that we still have a single time 
period, say [O, TI, but a two-stage decision. At time t = 0 we have to decide 
on XI and x2, taking into account the expected costs of the recourse actions at 
t = T (represented by the variables yl and yo). The latter clearly depend on 
xl, x2, and also on the distribution of the random entries. 

1.6 Wait-and-See solution 
This means solving 

and amounts in computing the optimal objective values separately for the real- 
izations and computing subsequently the expected value. In our computations, 
we took a discrete approximation with 10 x 10 x 10 = 1000 realizations. In 
general, for the different realizations different solution vectors are obtained. 
One might get the idea to construct a solution by taking the expected value of 
the solutions for the separate realizations. As we will see, our example indicates 
that this is usually not a good idea. 

1.7 Computational results, outlook on algorithms 
Table 1.7 displays the results obtained by solving the SLP-variants of the 

production problem. The rows correspond to the expected value problem, to the 
fat formulation, to the chance constrained problem (with probability levels 0.95 
and 0.99), to integrated chance constraint, to CVaR constraint, to the two-stage 
recourse problem, and to the wait-and-see problem, respectively. The second 
and third columns display the components of the optimal solution; the fourth 
column shows the optimal objective value of the corresponding SLP problem. 

The column headed by P shows the probabilities (2) computed for the opti- 
mal solutions obtained from the various SLP models. The last column displays 
the overall expected costs in the two-stage recourse problem, when fixing the 
first-stage variables according to the optimal solutions from the second and 
third column. 

Comparing the solutions obtained from the various approaches, we observe 
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I 11 x; I xf / z' / I  P 1 R-cost / 
I Exp 1 1  0.00 1 80.00 1 240.00 1 1  0.49 / 378.71 / 

Table 1. Computational results for the example 

Fat 
CC95 
CC99 
ICC 
CVar 
RS 
WSS 

a great diversity. The expected value solution and the fat solution, for instance, 
suggest a production plan, solely based on the second raw material. In addition, 
for these solutions the storage capacity is not fully utilized. Contrary to this, the 
ICC solution proposes a balanced usage of the two raw materials. The question 
arises: Which of these is the "true" solution of our stochastic problem? Clearly 
none of them can be identified as ultimately best; the proper choice depends on 
the modeling attitude and also on available solvers (implementations of solution 
algorithms). 

According to Richard W. Hamming, "the purpose of computing is insight, 
not numbers." In our case, we have built and solved several SLP problems 
corresponding to different modeling paradigms and based on the same initial 
deterministic LP model and the same probability distribution. The last two 
columns in Table 1.7 display an evaluation of the solutions obtained, based on 
two quality measures: the probability that the demand will be fulfilled and the 
overall expected costs. According to this, the expected value solution is by far 
the worst, having the lowest probability and highest costs. Almost as worse is 
the solution obtained form the nai've application of the wait-and-see approach, 
with averaged solutions. The proper choice clearly depends on the risk-cost 
attitude of the modeler. Assuming a modeler who places approximately equal 
weights on risk and costs, a good solution appears to be the C95 solution. 

When working with a single modeling paradigm, analysis of the model in- 
stance and the solution should be part of the modeling process. As an example 
for model instance analysis, let us consider the two-stage recourse formulation 
of our example. We may compute the expected value of perfect information 
(EVPI) and the value of stochastic solution (VSS) according to 

EVPI := zR  - zW = 35.96 and VSS := zV - zR = 101.24 

0.00 
28.24 

9.63 
44.26 
21.66 
32.59 
7.50 

where zW and zR  are the optimal objective values of the wait-and-see prob- 
lem and the two-stage recourse problem, respectively. zV is the objective 
value of the two-stage problem with z fixed as a solution of the expected value 

94.05 
71.76 
90.37 
55.74 
78.34 
67.41 
75.23 

282.14 
271.76 
290.38 
255.74 
278.33 
277.08 
241.10 

0.98 
0.95 
0.99 
0.77 
0.97 
0.93 
0.69 

285.82 
277.63 
291.37 
290.73 
281.49 
277.08 
375.19 



problem. These quantities are interpreted as valuing the effort of building a 
stochastic model, instead of talung the expected value problem, for instance. 
Loosely speaking, E V P I  and V S S  indicate a "degree of stochasticity" of the 
model instances. For details see [2] or [I 11. According to these measures, our 
example counts as highly stochastic. 

For SLP problems, the main numerical difficulties have their roots in the ex- 
pected values and probabilities involved in the model formulations. In general, 
computing them amounts in computing multivariate integrals. Regarding ex- 
pectations, the main solution approaches are based on approximating the prob- 
ability distribution by finite discrete distributions. Thus, the integrals reduce to 
sums, leading to (typically large-scale) LP problems. For chance constraints 
the integrals are evaluated by Monte-Carlo methods, which is time-consuming 
and provides results with a relatively low accuracy. 

In the next sections we will outline the basic ideas of the algorithms used in 
our computations. We will not discuss algorithms for integrated chance con- 
straints and for CVaR constraints. For these methods see [15], [16], as well as 
[ l l ] .  Introductory textbooks for SLP algorithms are [2] and [14]. For algo- 
rithms discussed in a detailed fashion see the books [5], [7], [ l  I], [18], [19], 
and [22]. For comparative computational results involving several algorithms 
see [I31 and the references therein. 

2. Algorithms: chance constraints 
The general problem formulation is 

with a being a high probability level and B = {x I Ax = b: x 2 0). The two 
basic classes of chance constraints are: 

Separate chance constraints: The probability applies to a single inequal- 
ity (T(J)  has a single row). For some distributions, including the normal, and 
sufficiently high probability levels, reformulations into convex NLP problems 
in algebraic terms exist, see [ I  I] or [22]. 

Joint chance constraints: The probability applies to a vector inequality 
(T(E) may involve several rows). If only the right-hand-side (RHS) is stochas- 
tic, the above problem is a convex programming problem for some distributions, 
including the normal, see [1 1] or [22]. 

In the special case, when only the RHS is stochastic, by taking T ( [ )  r T 
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and h ( J )  = J', ( 5 )  can be written as 

min cTx 
F ( T x )  2 a 

x  € a  

where we utilized P ( T x  _> J )  = F ( T x ) ,  with F  being the probability distri- 
bution function of (. In the sequel, we assume that ( has a multivariate normal 
distribution. In this case F  turns out to be a logconcave function (see [22]) and 
(6) becomes a convex programming problem. Nevertheless, the problem turns 
out to be difficult to solve numerically. 

On the one hand, the computation of F and its gradient V F  is a numerically 
difficult problem, which can only be carried out via Monte-Carlo integration 
methods in higher dimensions. Therefore, as far as possible, algorithms are 
utilizing cheaply computable Boole-Bonferroni-type bounds. On the other 
hand, the graph of F ,  except for a relatively small non-convex region, consists 
of extremely flat regions with practically vanishing gradients. Therefore, algo- 
rithms utilize Slater-points (feasible points x  with F ( T x  ) > a )  as navigation 
aids in the iteration process. 

A detailed discussion of the numerical issues can be found in [20]. For the 
Monte-Carlo techniques applied for the multivariate normal distribution func- 
tion and for the techniques for computing Boole-Bonferroni bounds see [ I l l ,  
[22], and the references therein. 

The algorithms for jointly chance-constrained problems are constructed in 
the following way: a general nonlinear programming algorithm is taken and 
subsequently specialized to the problem structure. As an example let us con- 
sider the central cutting plane method of Elzinga and Moore [3], endowed with 
a moving Slater-point by Mayer [19]. Figure 2 displays two iterations of the 
method. 

On the left-hand-side of the figure, the feasible domain of (6) is indicated by 

,,,,,,. ,,,,,,,, , ,) \4 Lab\ ,, ,,,.. . .,,,,., , ,) q 
\ 

objective (central) cut 

Figure 1. The central cutting plane method 



the shaded region. Pk is a convex polyhedron, containing the feasible domain 
and zk  is the current Slater-point. First the center xk of the largest hypersphere, 
inscribed into Pk is computed, which can be carried out by solving an LP prob- 
lem. The center x q i e s  in this case outside of the feasible region. Subsequently 
the intersection of the boundary of the feasible domain and of the straight line 
segment joining xk  and the Slater-point zk is computed. For this computation 
Boole-Bonferroni bounds are utilized. Applying a feasibility cut via a sup- 
porting hyperplane leads to the convex polyhedron Pk+1, still containing the 
feasible domain, as it can be seen in the central part of the figure. 

In Pk+l, the center of the largest inscribed hypersphere belongs to the feasi- 
ble domain. In this case, the center becomes the new Slater-point zk+l and an 
objective cut is carried out, where the cutting plane passes through zk+' and is 
parallel to the contour-hyperplanes of the objective function. The objective cut 
cuts off a portion of the feasible domain, nevertheless, the optimal solution still 
belongs to the reduced convex polyhedron Pk+2, shown in the right-hand-side 
of the figure. 

For details concerning this method, including a theoretical discussion, see 
[191. 

3. Algorithms: two-stage recourse problems, 
empirical distribution 

The general formulation of two-stage fixed recourse problems is 

min c T x + E [ Q ( x , J ) ]  
x ~ a  (7) 

where B = {x / Ax = b, x 2 0) and the recourse subproblem is 

where W is called the recourse matrix. Due to the fact that W is not stochastic, 
(7) belongs to the class of fixed recourse problems. Problem (7) is called 
a complete recourse problem, if the recourse subproblem (8) has feasible 
solutions for any x and J. The problem counts as having simple recourse if 
W = I and T ( [ )  = To  hold. The random entries in the model arrays can 
frequently be modeled as 

for instance, via principal component analysis, where TI", hk are deterministic 
arrays. (1; . . . , J, are in many cases stochastically independent. 
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Now we assume that E has an empirical distribution with L realizations (sce- 
narios) i'" and corresponding probabilities pk, k = 1 ,  . . . ,  L. Let, furthermore, 
T k  = T ( i k ) ) ,  hk = h ( i k ) ) ,  k = 1 , .  . . ,  L. 

In this case the problem can equivalently be formulated as a deterministic 
LP problem, having the structure as displayed in Figure 3. 

Nai've view: the discretely distributed case is easy to handle numerically; 

Figure 2. Dual block-angular structure of the equivalent LP 

just solve this LP by readily available general-purpose LP solvers. To see the 
difficulty, just take 10 independent random variables, each with 10 realizations. 
The number of diagonal blocks will be L = 10l0. Thus, also in the discretely 
distributed case, ideas are needed. 

In fact, a first idea is to utilize the special structure of the LP. There are two 
main classes of algorithm in this category. 

The first class consists of decomposition methods, the most widely used al- 
gorithms will be discussed in the next section. 

Interior point methods belong to the second class, where the algorithm of 
MCszBros [21] turned out to be one of the best in our numerical experiments. 

3.1 Decomposition methods 
These methods are based on the following basic observation: the expected 

value of the recourse function 

is a piecewise linear convex function. 
The basic decomposition method is due to Benders [I]. Its specialized ver- 

sion to SLP-problems, called L-shaped method, has been developed by Van 
Slyke and Wets [25] .  The main idea is to apply the cutting plane method to the 
epigraph of f .  Having xu as the current iterate, proceed as follows: 
H Compute f ( x u )  by solving L recourse problems (8) via the simplex method. 
Fortunately, utilizing the dual solutions, this also provides a supporting cutting 



hyperplane. 
H Check the optimality criterion f ( x u )  5 0' + E .  

H If the algorithm does not stop, apply a cut. Technically, the cuts are collected 
as constraints in the relaxed master problem 

QU := min cTx +Z 

D k x  -2 S d k ,  k = l ,  . . . ,  V 
x  E l 3  

H Solve the current relaxed master problem to obtain xu+'. 

This approach has, however, some drawbacks. On the one hand, the method 
produces large steps in the beginning phase, even with a nearly optimal starting 
solution. On the other hand, there is no reliable strategy for dropping redundant 
cuts. 

Both of these shortcomings are eliminated in the regularized decomposition 
method of Ruszczyfiski [23]. The main idea is to add a regularizing term to the 
objective of the relaxed master problem: 

where 2' is the current candidate solution and X > 0 holds. The candidate 
solution is changed, only if the solution f ( x u )  is sufficiently smaller than f (2').  
Additionally, it turns out that it is sufficient to keep at most n + L cuts. 

4. Algorithms: two-stage recourse problems, 
general distributions 

Decomposition methods certainly help to solve problems with a large number 
of realizations. It is still open, however, what to do if in the discretely distributed 
case we have, for instance, L = 10l0 joint realizations. A further problem is, 
what to do if < has a continuous distribution? 

We will consider the main ideas of three basic approaches in the subsequent 
sections. An additional general approach is based on stochastic quasi-gradients; 
for these methods see Marti [18]. 

4.1 Successive discrete approximation (SDA) 
This algorithm is due to Kall [8], Kall and Stoyan [9], Frauendorfer and Kall 

141, Frauendorfer [5]. See also [ I  I]  and [14]. The basic idea is to approximate 
the original distribution by discrete distributions in a successive manner, via 
partitions of E ,  which is an interval covering the support of <. 

Having the partition E = El U. . . UEL, the approximate discrete distribution 
will be 

Pk = P ( I  I t E E k ) ;  tk = WE I < E Z k )  
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Figure 3. Successive subdivision of E 

for k = 1, . . . , L. The key part of the method is the subdivision strategy. 
The subdivision strategy is based on lower and upper bounds, for each of the 

cells in the partition 

based on the Jensen and on the Edmundson-Madansky inequalities, respec- 
tively. For computing the upper bound, the recourse subproblem (8) has to be 
solved for each of the vertices of 2, with J taken as the vertex. 
H the cell to be subdivided next will have the maximal relative difference re- 
garding the bounds. 
H the coordinate for the subdivision is selected by employing various heuristic 
measures of nonlinearity along the corresponding direction. 

Great merit of the method: computable error bounds. 

4.2 Stochastic decomposition (SD) 
This algorithm is due to Higle and Sen [6], [7]. It can be considered as a 

stochastic, sampling-based version of Benders-decomposition. Let us denote 
by (I,. . . , p, . . . a sample according to the distribution of J. 

The basic idea is the following: instead of E[Q(x, J)], build Benders-type 
cuts to the Monte-Carlo approximation 

This is a moving target, therefore, besides adding new cuts, the existing cuts 
must also be updated. Sampling and adding cuts runs in a successive manner. 
The most efficient variants employ "incumbent solutions" and regularized mas- 
ter problems. New cuts are computed by taking into account all previous dual 
solutions, and the stopping rule is based on bootstrapping. 

4.3 Sample average approximation (SAA) 
The basic idea of this algorithm has been widely used by practitioners. It be- 

came increasing attention due to recent results concerning speed of convergence 



and judging the quality of the solution, see Shapiro and Homem-de-Mello [24] 
and Mak, Morton and Wood [17], and the references therein. 

The idea is to draw a sample of sample-size L, consider this as a discrete 
distribution and solve the corresponding two-stage problem. Thus we have 

Subsequently the quality of the solution is to be judged, and if needed, the 
procedure repeated with a larger sample-size. 

Crucial issue: judging solution quality. The best estimators are based on the 
optimality gap between statistical lower and upper bounds. 

5. Illustrative computational results 

We have randomly generated test problem batteries for two-stage recourse 
problems, with dimensions A (10 x 20), W (5 x 10). T and h are both sto- 
chastic and the random vector [ is 5-dimensional. Each battery consists of 10 
test problems. 

The batteries were generated as follows: first we have generated a basis- 
battery with [ having a normal distribution with stochastically independent 
components. This has been used to generate 5 further batteries by discretizing 
the distribution, resulting in test problem batteries with the following amounts 
of joint ralizations L: 2'' = 1'024, 215 = 32'768, ; 2" = 1'048'576, 225 = 
33'554'432, and 230 = 1'056'964'608. 

The testing environment was SLP-IOR, our model management system for 
SLP, developed jointly with P. Kall, see [lo], [12]. 

Computer: 2.6 GHz Pentium-I11 PC with 1 GB RAM, under the operating 
system Windows 2000. 

Figure 4 displays the minimum, maximum, and average computing times 

Figure 4. DAPPROX: computing time in seconds 

by DAPPROX, our implementation of the successive discrete approximation 
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Figure 5. DAPPROX and SAA: objective values at termination 

method (jointly developed with P. Kall). On the left-hand-side the dependence 
of the computing time on L is displayed, whereas the right-hand-side chart 
shows the dependence on the relative accuracy of the solution. For the latter 
we took accuracies E = 5 . lop2 ,  lop2 ,  5  . lop3, lop3, 5  . loe4, and 
The computing times were quite acceptable, even for SLP problems with one 
billion realizations. 

In Figure 5 the objective values at termination are displayed, for 
DAPPROX and SAA, the latter being our implementation of the SAA algo- 
rithm. For the computations we took test problem # I .  The two horizontal lines 
correspond to the lower and upper bounds, obtained by DAPPROX for the basis 
problem with the normal distribution. The approximately parallel increasing 
curves labeled as "discr. lower bnd" and "discr. upper bnd" correspond to the 
results obtained by DAPPROX (5% relative accuracy). 

For SAA (lowest curve in the left-hand-side chart) we took L = 500 and 
generated 5 samples. After solving the corresponding 5 problems, the objective 
values of the solutions have been estimated using a sample-size M, which has 
been chosen for the two charts as M = 1000 and M = 5000, respectively. The 
solution with the best estimated objective value was returned by the solver as 
solution. Observe that the quality of the SAA solution improves dramatically 
by a relatively moderate change of the run-time parameter M. 
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Abstract 
In this paper we study the parameter estimation problem for stochastic dis- 

tributed parameter systems by using the modified maximum likelihood method. 
More specifically, by using the US treasury bond data, the parameter estimation 
is performed for the stochastic hyperbolic and parabolic models describing the 
behavior of the term-structure of the US bond. From the prediction results, we 
can show that the parabolic factor models work better than the hyperbolic ones. 

Key words: Factor model, US bonds, MLE, Stochastic Parabolic Equation, 
Maximum likelihood estimate 

1. Introduction 
Parameter estimation problem for stochastic distributed parameters has a 

long history and there still exist many open problems. In this paper, we present 
a practical application of the parameter estimation to a financial engineering 
problem. Let P( t ,  T) denote the bond price where t  is a present time and T 
denotes the maturity. The bond price P( t ,  T) changes randomly in value and 
at t = T P(T ,  T )  takes the preassigned value. 

From the relation that P( t ,  T) = expi- J ~ - ~  f ( t ,  x)d2), the forward rate 
process f ( t ,  x) may be directly modeled instead of P. In this paper, we check 
the feasibility of the model selection of forward rate process by using some real 
data. 

Here we use the treasury bills data which are easily obtained from the web- 
site. In US government securities, we used the constant maturity bond data,i.e., 
1 year (starting date 01/02/1962) 2 year (starting date 06/01/1976) 3 year 
(starting date 01/02/1962) 5 year (starting date 06/01/1962) 7 year (starting 
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date 07/01/1964) 10 year (starting date 01/02/1962) 20 year (starting date 
10/01/1993) . 

Noting that 20-year bond only starts at 10/01/1993, we cut past date for 
other bonds and set all data which start from this date up to 05/28/2004. In Fed 
data, there are missing parts and so we adjust these data by using the method 
proposed by Cochrane .(See http://gbs.uchikago.edu/fac 
/john.cochrane/) 

To derive the forward rate process, the obtained yield data are regarded as 
zero-coupon curve. Hence we have the following relation between forward rate 
f ( t ,  x) and the yield curve Y ( t ,  T )  such that 

L T - I  f ( t ,  x)dx = log(1 + Y ( t ,  T ) ) .  
T - t  

Theoretically speaking, if we differentiate the above equation with respect to 
T  - t ,  we can get the forward rate process f ( t ,  x).  However, we only obtain 
7 different maturity bonds. Firstly, we use the usual curve fitting procedure 
as stated in [I] and next we differentiate this process with respect to T  - t  
and obtain the forward rate process. As was mentioned in [I], the obtained 
results strongly depend on the methods used. For example, if we use the cubic 
spline and differentiate the interpolated process, the obtained forward process is 
largely volatile at the long maturity part. To aviod this we use the interpolation 
with cubic-function which is found in MATLAB as 'interpl( ..., 'cubic').m'. 

In Fig.1, you can see the original T-bond yield curves. By using the cubic 
interpolation ( interpl with 'cubic' in MATLbB) we obtain the smooth yield 
curve and differentiate this process. In Fig.1, the derived forward rate process 
is demonstrated. Now from this process, we shall try to identify parameters 
contained in the dynamics. Here we use the classical procedure to identify 
the several parameter functions. The main aim of this paper is to show that 
the parabolic type dynamics is experimentally accepted as the forward rate 
dynamics. 

2. Hyperbolic system modeling 

The most popular dynamics of the forward rate processes is a hyperbolic 
type partial differential equation which was first introduced by Heath, Jarrow 
and Morton from the absence of arbitrage argument and developed further by 
Santa-Clara et. a1 [2] and Aihara and Bagchi [3]. 

The general hyperbolic model is given by 
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Figure 1. Original yield curve data (US bonds) and derived forward rate 

where 
E W ;  x)w(t, Y)) = d x ,  ~)t. 

We need the following regularity property for f (t, x) to perform the parameter 
identification. 

THEOREM 1 We assume that 

and 

where G =]O, T + if[. with G =]O, T[ Hm denotes the rn-th order Sobolev 
space and Q = JG q(x, y)(.)dy. Then 

f E ~ ~ ( 0 ;  C ( T f ;  H m ( G ) ) ,  ( 5 )  

where Tf =]O, tf[. 

The proof can be found in [3] .  



2.1 Identification of the covariance kernel 
The most important part of the forward model is to identify the covariance 

kernel of the noise process. To estimate this kernel, we use the classical proce- 
dure by using some properties of the Ito stochastic integral. Noting that 

we have 

where (., .) and I . / denote the inner product and norm in L ~ ( G ) .  The discrete- 
version of the formula (6) is 

Applying (6) to T-bond data, the estimated kernel of q(x,  y) is shown in Fig.2. 
Here we used the data f ( t ,  x) for 2000.64 5 t(year) 5 2002.183 shown in 
Fig. 1. In the obtained results, the value of the kernel at the long maturity parts 

Figure 2. Estimated kernel q(x, y) and J: q(x, y )dy  

seems to be rather big. This phenomena may be caused by the interpolation 
method "cubic-function". 

(i) Modeling in the risk neutral world 
Hereafter we set the kernel q(x,  y) as the estimated one. In the risk neutral 
world, the function p(x)  is set as 
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Hence the p(x)-process becomes as shown in Fig.2. 
In order to check the feasibility of this model, we simulated the hyperbolic 

equation, setting the value of the initial condition as f (2002.183, :). Without 
adding the noise w(t ,  x )  , we obtain E{f ( t ,  x ) /  f, = f (2002.183, :)). In Fig.3, 
the predicted value is shown. 

Figure 3. Predicted forward rate(Hyperbo1ic case) 

From this result, we clearly see that our observed data is not in the risk neutral 
world. So we need to identify the market price of risk in the next subsection. 

(ii) Identification of market price of risk: 
Here we consider the following restriction: The market price of risk has a form; 

i.e, we reset p (x)  as 

This X has primarily been invented to price consistently interest rate deriv- 
atives rather than to fit the historical evolution of the forward rate process. 
However, this parameter X is still needed to reproduce the forward rate process. 

It is interesting that the parameter X of market price of risk may be identified 
to maximize the modified log likelihood functional. The used data are the same 
as those used in the previous identification. 

The exact likelihood function for an infinite-dimensional system is diffi- 
cult to derive without any strict conditions. However, from Thorem 1, we 
can define the modified likelihood functional by setting m = 1 and get f E 
L~ (0;  C ( T f ;  H1)). Hence 



where t2 = 2002.185, tl = 2000.646 and 

To derive the exact likelihood functional we need to support the invertibility of 
the covariance kernel 

In the infinite dimensional case, the operator Q is not invertible. Ultimately 
we replace the weight Q appearing in the likelihood functional by the identity 
operator. We call this the modified likelihood functional. To avoid this ambi- 
guity, using the principal component analysis, we can pick up finite principal 
components. In such a case, we can derive the inverse of Q and the exact 
likelihood can be derived. However, the proposed modified likelihood is easily 
constructed without using principal component analysis and still contains the 
infinite number of random sources. The maximum MLE is given by 

The derived and the predicted forward rate process are respectively shown 
in Fig.4. 

In Fig.5, we present the real forward rate and predicted processes, respec- 
tively. 

3. Parabolic modeling 
In this section, we introduce the parabolic type partial differential equation 

for the forward rate process instead of the hyperbolic type. This model was 
already proposed by Bouchaud et.al [4] and [5] to support the smoothness of 
the forward process with respect to time-to-maturity and that the information 
diffuses from one maturity to the next. 

In the empirical studies, we find that the adjusting term is needed to fit 
the historical data. In addition to the x J ~  term, we add the diffusion 
term in the model, because from Fig.5 it seems that the shape of the real for- 
ward rate process is a diffused shape rather than the predicted shape from the 
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Figure 4. Estimated market price of risk and predicted forward rate 

Hyperbolic-case 

Poward rate 

Figure 5. Predicted forward rates and real rate 

hyperbolic model. Hence we set the simple parabolic type equation for the 
forward rate model and identify the systems parameters from the data used 
from 1999.5 5 t 5 2001.79. From this experiment, we can conclude that the 
parabolic modeling is more efficient than the hyperbolic modeling. 

We consider the following model: for x E G =] 0,19[, 

We work in the following Hilbert spaces: 

V = H ' ( G )  c H = L ~ ( G )  c V' = dual of V. 
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Define 

The variational form of the system becomes V$ E V, 

THEOREM 2 We assume 
(C- I )  k  > 0 
(c-2) f o  E L~(R; H ) ,  E L~(!J x T ~ ;  vf) 
(C-3) TT{Q)  < co. (15) has a unique solution in 

L2(R; c(T~; H) n L2(Tf; v)). 
Proof. The parabolic type stochastic evolution equations have been studied by 
many authors,e.g., [6],[7]. 

In order to define the modified likelihood functional we need the following 
theorem: 

THEOREM 3 In addition to all conditions o f  Theorem 3.1, we set 

By using the similar method used in [3] we can prove this theorem. 
We can use the same technique for identifying q(x, y) in section 2. Further- 

more we also set 

We need to identify unknown parameters k ,  a', a2, PI, p2 and A. 
(i) Identification of boundary parameters: 

af(t1'9) and belong to L2(0 x Tf; R'), re- Noting that from Theorem 3, 7 
spectively, we can apply the usual least square method and obtain the following 
algorithm: 
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and for the boundary x = 19 we can set the similar algorithm. 
The estimated results are shown in Fig.6 for 1999.5 5 t2 5 2002. 

Figure 6. Sample runs of estimated boundary parameters 

(ii) Identification of k and A: 
In order to identify the diffusion coefficient k and A, we also introduced the 
modified likelihood functional: 

where we already find that f E L2(R x Tf; H 2 ( G ) )  from 2. The maximum 
MLF and are given by 

where 

t a 2 f ( ~ . x )  
, d f ( s ,  z ) )  - .fti (- + b(z ) ,  a2f(s'x) N = [ 8 x 2  Ids 

q(z, 2 ) :  df ( s .  z ) )  - .ftl (- + f i (z) ,  ~ / m ) d s  

The sample runs of the estimated X and k are shown in Fig.7. The predicted 
value of forward rate is given in Fig.8 with its true value. 



Istinrt.6 markor price of risk ;. 
I 0.02, 1 , , 
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Figure 7. Estimated X and I; 

Figure 8. Predicted forward rate (Parabolic case) and true value 

4. Concluding remarks 
As shown in Fig.8, we could construct the parabolic type partial differential 

equation for the forward rate dynamics whose solution fits the future value of 
the forward rate better than the hyperbolic model. From the existence for the 
diffusion term, the shape of the predicted forward rate becomes flat and so the 
predicted forward rate for the parabolic case fits the real rate quite well. The 
calibration of the proposed model is very important to applying the mathemati- 
cal algorithm to the practical situation and this should be done in the empirical 
probability rather than risk-neutral probability. For the identification problem 

in the parabolic case, we identified the term k a ' f (2x )  az + X for the un- 
known k and A. From the obtained results, in the empirical probability world we 

a2f(t,.) k a 2 f ( t , ~ )  need an extra term k a22 az2 + ~J4(2,2) . The form of these terms 
are not theoretically derived and we only set the function form artificially. It 
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should be noted that in the parabolic case, X = 0 does not mean the risk neutral 
a2f ( t  world because we still have an extra term k+. 

Although Cont [5] proposed that the boundary value processes be stripped out 
of the original partial differential equation, we set the mixed boundary condition 
for the forward rate process . In our case, we can consider the more general 
type than Cont's model, e.g., the presence of boundary noises. If the covariance 
kernel is finite dimensional, we can transform the original measure to the risk 
neutral measure . If we do not consider the pricing of the future derivatives, it 
seems that this finite dimensionality condition is not required. However for the 
optimal portfolio problem with power utility we need this finite-dimensionality 
condition to support the optimal portfolio. 

The most important part of this paper is how to fit the proposed model to the 
historical data. In the risk-neutral probability world, we only need to identify the 
kernel of the noise. However we can not reproduce the real future forward rate 
process from risk neutral case. The obtained empirical results strongly depend 
on the interpolation method which was used to convert the yield curve to forward 
rate process. In order to avoid this differential instability problem, we should 
reformulate the parameter identification problem as the filtering problem with 
discrete-time observation data. In such a reformulation, we need not to use 
the interpolation method and differentiation with respect to time-to-maturity 
variable. 
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Abstract In this paper we analyze the electricity portfolio problem of a big consumer in a 
multi-stage stochastic programming framework. Stochasticity enters the model 
via the uncertain spot price process and is represented by a scenario tree. The 
decision that has to be taken is how much energy should be bought in advance, 
and how large the exposition to the uncertain spot market, as well as the relatively 
expensive production with an own power plant should be. The risk is modeled 
using an Average Value-at-Risk (AVaR) term in the objective function. The 
results of the stochastic programming model are compared with classical fix mix 
strategies, which are outperformed. Furthermore, the influence of risk parameters 
is shown. 

keywords: Stochastic Optimization, Scenario Generation, Energy Markets, 
Optimal Electricity Portfolios, Average Value-at-Risk 

1. Introduction 
In this paper, we present a multi-stage stochastic optimization model for 

calculating optimal electricity portfolios. We refer to [ lo ]  for an overview of 
stochastic programming and to [ I ]  for applications to the energy market. The 
general formulation of a multistage stochastic optimization program is 

where < denotes a multi-dimensional stochastic process describing the future 
uncertainty. The constraint-set X contains feasible solutions (x,  <) and the 
(non-anticipativity) set N of functions < H x is necessary to ensure, that the 
decisions xt are only based on realizations up to stage t (to, . . . , I t ) .  f (z(<), <) 
is some cost function. 
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We apply this framework to the optimization of electricity portfolios. Ad- 
ditionally, an Average Value-at-ksk functional is included, enabling modern 
risk management, which is necessary to survive in liberalized energy markets 
economically. 

This paper is organized as follows. Section 2 describes the estimation and 
simulation of the (uncertain) electricity spot market, which is the most import 
input for the stochastic program. Section 3 provides a detailed overview of the 
underlying model. Section 4 summarizes numerical results, while Section 5 
concludes the paper. 

2. Scenario Generation 

2.1 Estimation and simulation of the spot market 

The generation of scenarios for the possible development of spot prices is 
based on an econometric model which is designed to capture the past move- 
ments of the spot price as good as possible. This model will be capable of 
giving good estimates for the expected price at every hour of the period under 
consideration. To generate realistic scenarios we simulate the residuals of the 
model and thereby distort the prediction to get a possible trajectory for the spot 
price of energy. At the end, we compute the mean for 4 consecutive values and 
therefore reduce the price movement in one day to six data points, representing 
the average price from 0-4,4-8,8- 12,12- 16, l6-20,20-24 o'clock respectively. 

The modeling of the spot prices is done using linear regression where the 
main explanatory variables are: the hour of the day, the day of the week, and 
the season. The regressors related to time are modeled in such a way that there 
are initially 24 x 7 x 3 = 504 dummy variables indicating which hour of which 
day in what season a specific data point belongs to. Obviously, this yields to an 
unnecessary huge model, which can be reduced in a further step. The reduction 
is based on the observation that the coefficient of a dummy variable will be the 
mean of the data points that it points to. A feasible way to reduce the number 
of regressors would be to compare the means of the different hours on the 
different days in the different seasons and club two regressors if the means are 
only insignificantly different. To determine whether two means are different, 
we use the Kruskal-Wallis test (see for example [ 5 ] ) ,  since it is based on rank 
order and does not assume the data to be distributed according to any specific 
distribution. The necessity of such a non-parametric approach will become 
clear, when we discuss the residuals of the model. With this procedure, we are 
able to significantly reduce the number of regressors without sacrificing much 
of the accuracy in predicting the expected (mean) price in the respective hours. 

As already mentioned, we also use temperatures as explanatory variables. 
This proved to be beneficial (in terms of explanatory power) and also supports 
the intuition of modeling temperatures not as a single variable, but to split it up 
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into six variables measuring the effect of temperature on power prices - not for 
the whole day, but for the six 4-hour blocks described above. 

This model of the stock prices focuses heavily on the demand side of the 
market, which is reasonable, since the average prices and the daily patterns 
of price movements can be explained with these factors pretty well (adjusted 
~ ~ = 0 . 6 ) .  To explain long term changes in the market and to understand the 
peaks in the hourly spot price, it would be a valuable idea to include the supply 
side too. This would allow for a better understanding of the energy market 
and probably boost the insample accuracy too. However, when it comes to 
simulation these gains would probably be lost, because the supply factors are 
hard to forecast. 

To capture some of these effects we add an AR(1) and AR(25) term to our 
Regression model and obtain a R' of 0.84. 

An inspection of the residuals shows, that those are clearly not normal. 
Since we need to simulate from the residual distribution, we have to fit some 
parametric models to the empirical residuals. It turns out that the distributions 
are extremely wide stretched (peaks in the prices) and are therefore heavy 
tailed. We chose to use a stable distribution to fit the data, since the family 
of stable distributions contains heavy tailed distributions too, and it is known 
that sums of independent identically distributed random variables follow some 
stable law. The family of stable distributions can be characterized through their 
characteristic function 

where 0 < a! < 2 can be interpreted as an index of stability (everything below 
2 is heavy trailed), P is a skewness parameter, y a scale parameter, and 6 a 
location parameter. For a in depth description of heavy tailed distributions, 
their properties and how to fit them see [8]. To fit the stable distribution to 
our residuals, we split the residuals into 6 groups according to which time slot 
they belong to and separately estimate stable distributions for these time slots. 
In a next step we generate a sufficient number of random draws from these 
distributions and use those together with the predicted prices to obtain spot 
price trajectories. For fitting the stable distribution and the generation of the 
random variates we use the software stable.exe (see [6]). 

For fitting the model we use one year of hourly data (01.06.2005-31.05.2006) 
from the European Energy Exchange (EEX). Using the fitted model and distri- 
bution of the residuals, we simulate price trajectories corresponding to a price 
development of half a year. Figure 1 dipicts the means of the simulated values 
in each of the 4 hour slots (left) and 20 days of a typical simulation trajectory 
(right). 



Figure I .  Averages of simulated price trajectories (left), Sample simulated spot price trajectory 
(right). 

2.2 Generation of scenario trees 
We apply a scenario generation method based on [7]. This method is 

optimization-problem related, and aims at minimizing a probability metric with 
a (-structure, i.e, the uniform distances of expectations of functions taken from 
a class 3-t of measurable functions. The Wasserstein distance (from the class 3-t 
of Lipschitz continuous functions), which plays an important role for stability 
results and approximation of stochastic programming models, has been used. 

The implemented method generates scenario trees with a stagewise-fixed 
structure, which differs from other methods, e.g. [2] or e.g. an explicit method 
for the energy market in [4]. 

The size of the generated underlying spot market scenario tree with the 
stagewise-fixed structure, which was used for numerical experiments, is 

where nt denotes the number of nodes in stage t ,  resulting in 560 scenarios. 

3. Optimization Model 
The goal of the optimization is to determine the amount of energy that should 

be bought in advance for a time period of half a year. The driving factor of the 
optimization is the expected demand for energy at all points of the considered 
time period. This demand is assumed to be non-stochastic and can be met in 
three ways. One may 

1 buy electricity on the spot market, 

2 produce electricity, and/or 
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3 buy supply contracts for future delivery of energy. 

The supply contracts are designed as follows: every month the producer 
can consume a certain amount of energy ui in every of the six periods of the 
day. This amount is part of the contract and can be specified by the consumer. 
On every day the energy consumption is bounded by a fraction of the overall 
monthly consumption, of course with the additional restriction, that the monthly 
consumption adds up to the pre-specified amount. 

On the tree described in section 2.2 the program is shown in equation (I),  
which minimizes the expected total cost and the (terminal) Average Value- 
at-Risk (AVaR). Let AV@R, be defined as the solution of the optimization 
problem 

1 
inf {a + - E[Y -a]+ : a E R), 

1 - a  

where Y is a random cost variable. With a finite set of scenarios this optimiza- 
tion problem can be reformulated as a linear program (see [9]). 

M(n) is the month of the node n, gn,h, s,,h, m n , h  electricity coming from 
own production (generation), the supply contract and the spot market in node n 
and hour-block h respectively, while Dn,h denotes the (deterministic) demand. 
,5' represent the daily upper constraint on consumption, defined as fraction of 
the overall monthly consumption. 

R(n, t )  returns the scenario predecessor node of terminal node n in stage t ,  
P,(,) is the scenario probability of the scenario terminating in node n. T ( n )  
returns the stage of node n, FZ), F,O are the costs of the peak and offpeak future 
at stage t ,  and 4 is a factor by which the contract is cheaper than the future 
price. um,h is the optimal contract volume for month n and hour-block h. <,,h 

is the stochastic spot price. 
The constraints the model ( I )  are defined for different parameter sets. The 

letter in parenthesis at the right indicates, which group of sets the constraint 
is defined for. Let 3-1 be the set of all hour-blocks, and Rp and 3-1, peak and 
off-peak hour-blocks. N the set of all nodes and NT the set of all terminal 
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Figure 2. Demand of a large local energy distributor. 

nodes. M ,  is the set of all stageslnodes within month m. The following group 
of sets are applied: 

(a) Vn E N,'dh E 'H, 

(b) Vn E N ,  'dh E ' H p ,  

(c) 'dn E N ,  'dh E K O ,  

(d) 'di E M,, 'dm E {June, . . . , November), Vh  E 'H. 

(e) Vn E NT,'dh E 'H. 

4. Numerical Results 
A (deterministic) demand forecast of a large local energy distributor has 

been used. This demand is shown in Figure 2 for each of the six 4-hour blocks 
described in Section 2.1. 

To enable a numerical comparison, the following parameters have been fixed: 
The cost of producing energy G'prod is Euro 70 and the maximum production 
Gmax per 4-hour block is 5000MW. Factor P has been set to 0.1 and d to 0.9. 
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Spot Market Supply Contract Production Expected Total Cost (Euro) 
20% 60% 20% 1.838.258.100 
20% 70% 10% 1.706.414.546 
20% 80% 0% 1 S74.570.991 

Table 1. Expected Total Cost for Fix Mix Portfolios 

June July August September October November 
0-4 229153 546926 510129 449503 407692 802547 

Table 2. Example contract for ct = 0.9 (MWh) 

a Expected Total Cost (Euro) Contracted Volume (GWh) 
0.7 1.221.079.145 19990 

Table 3. Aggregated results of the stochastic optimization for different risk parameters 

4.1 A Fix Mix Solution 
To compare the stochastic solution, we calculated some fix mix strategies. 

The results are shown in Table 1. 

4.2 The Stochastic Solution 
The stochastic optimization models have been implemented in AMPL (see 

[3]). The workflow has been developed in MatLab and some parsing scripts 
have been implemented in Python. The optimization problems have been solved 
with the MOSEK interior point solver. 

The optimization problems were solved with a Pentium 4 (2GHz) with 1GB 
RAM running Debian GNUILinux. The average solution time of the underlying 
problems is half an hour. 

A typical optimal contract volume sheet is shown in Table 2 for a = 0.9. 
To see the influence of the risk parameter a,  the expected total cost of the 
portfolio in Euro and the sum of contracted volume in GWh is shown in Table 3. 
Additionally, these results show that the stochastic solution clearly outperforms 
fix mix strategies. 



5. Conclusion 
In this paper we proposed a model to solve the electricity portfolio problem 

of a big consumer in a multi-stage stochastic programming framework. The 
decision that has to be taken is how much energy should be bought in advance 
and how large the exposition to the uncertain spot market, and the relatively 
expensive production by an own power plant should be. It has been shown 
that the underlying spot price can be realistically estimated and simulated with 
a regression model. The underlying scenario trees representing the uncertain 
future spot prices are used to calculate optimal electricity portfolios. Different 
supply contract details have been included, such that the model is ready to be 
applied for practical usage. 

The results show that the solution of the multi-stage stochastic program 
clearly outperforms classical fix mix strategies. Furthermore, by varying the 
risk parameter a,  the consumer can fine-tune his optimal decision. 
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Abstract The mean-risk approach quantifies the problem of choice among uncertain prospects 
in a lucid form of only two criteria: the mean, representing the expected outcome, 
and the risk: a scalar measure of the variability of outcomes. The model is ap- 
pealing to decision makers but it may lead to inferior conclusions. Several risk 
measures, however, can be combined with the mean itself into the robust optimiza- 
tion criteria thus generating SSD consistent performances (safety) measures. In 
this paper we introduce general conditions for risk measures sufficient to provide 
the SSD consistency of the corresponding safety measures. 

keywords: decisions under risk, stochastic dominance, mean-risk. 

1. Introduction 
We consider the general problem of comparing real-valued random variables 

(distributions), assuming that larger outcomes are preferred. Two methods are 
frequently used for modeling choice among uncertain prospects: stochastic 
dominance, and mean-risk analysis. The former is based on an axiomatic model 
of risk-averse preferences but it does not provide us with a simple computational 
recipe. It is, actually, a multiple criteria model with a continuum of criteria. 
The mean-risk approach quantifies the problem in a lucid form of only two 
criteria: the mean, representing the expected outcome, and the risk: a scalar 
measure of the variability of outcomes. The mean-risk model is appealing to 
decision makers but it is not capable of modeling the entire gamut of risk-averse 
preferences. Moreover, for typical dispersion statistics used as risk measures, 
the mean-risk approach may lead to inferior conclusions. 
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In this paper we analyze conditions that are necessary and sufficient for 
risk measures to provide the SSD consistency of the corresponding mean-risk 
models. Actually, we show that under simple and natural conditions on the risk 
measures they can be combined with the mean itself into the robust optimization 
criteria thus generating SSD consistent performance (safety) measures. The 
analysis is performed for general distributions but we also pay attention to 
special cases such as discrete or symmetric distributions. We demonstrate 
that, while considering risk measures depending only on the distributions, the 
conditions similar to those for the coherency are, essentially, sufficient for SSD 
consistency. 

2. Stochastic dominance and mean-risk models 
In the stochastic dominance approach random variables are compared by 

pointwise comparison of some performance functions constructed from their 
distribution functions. Let X be a random variable representing some returns. 
The first performance function Fl (X ,  r )  is defined as the right-continuous cu- 
mulative distribution function itself: Fl(X. r )  = P[X 5 r]  for r  E R. 
We say that X weakly dominates Y under the FSD rules ( X  k,,, Y), if 
F l ( X ,  r )  < Fl (Y, r )  for all r  E R, and X FSD dominates Y ( X  k,,, Y), 
if at least one strict inequality holds. Actually, the stochastic dominance is a 
stochastic order thus defined on distributions rather than on random variables 
themselves. Nevertheless, it is a common convention, that in the case of ran- 
dom variables X and Y having distributions Px and Py, the stochastic order 
relation Px k Py might be viewed as a relation on random variables X Y 
[I 11. It must be emphasized, however, that the dominance relation on random 
variables is no longer an order as it is not antisymmetric. 

The second degree stochastic dominance relation is defined with the second 
performance function F2 (X, r )  given by areas below the cumulative distribution 
function itself, i.e.: F2 (X ,  r )  = Jr, Fl ( X ,  t )d t  for r  E R. Similarly to FSD, 
we say that X weakly dominates Y under the SSD rules ( X  k,,, Y), if 
F2 (X, r )  5 F2 (Y, r )  for all r E R, while X SSD dominates Y (X k,,, Y), 
when at least one inequality is strict. Certainly, X >,,, Y implies X >,,, Y. 
Function F2(X, r ) ,  used to define the SSD relation can also be presented as 
follows [12]: F2(X, r )  = E[max{r - X, 011, thus representing the mean 
below-target deviations from real targets. 

If X +,,, Y, then X is preferred to Y within all risk-averse preference 
models that prefer larger outcomes. In terms of the expected utility theory 
the SSD relation represent all the preferences modeled with increasing and 
concave utility functions. It is therefore a matter of primary importance that an 
approach to the comparison of random outcomes be consistent with the second 
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degree stochastic dominance relation. Our paper focuses on the consistency of 
mean-risk approaches with the SSD. 

Alternatively, the stochastic dominance order can be expressed on the in- 
verse cumulative functions (quantile functions). Namely, for random variable 
X, one may consider the performance function F-1 (X,p) defined as is the 
left-continuous inverse of the cumulative distribution function Fl (X, r), i.e., 
F-1 (X, p) = inf { q  : Fl (X, q )  > p). Obviously, X dominates Y under the 
FSD rules (X >,,, Y), if F-l (X, p) 2 F-1 (Y, p) for all p E [ O , l ] ,  where at 
least one strict inequality holds. Further, the second quantile function (or the 
so-called Absolute Lorenz Cuwe ALC) is defined by integrating F-1, which 
provides an alternative characterization of the SSD relation, 

Mean-risk approaches are based on comparing two scalar characteristics 
(summary statistics), the first, denoted p(X), represents the expected outcome 
(reward), and the second, denoted e(X), is some measure of risk. The original 
Markowitz portfolio optimization model [9] uses the variance or the standard 
deviation. Several other risk measures have been later considered thus creating 
the entire family of mean-risk models. Risk measures in Markowitz-type mean- 
risk models, similar to the standard deviation, are translation invariant and risk 
relevant deviation type measures (dispersion parameters). Thus, they are not 
affected by any shift of the outcome scale Q(X + a) = Q(X) for any real 
number a and they are equal to 0 in the case of a risk-free portfolio while taking 
positive values for any risky portfolio. Unfortunately, such risk measures are not 
consistent with the stochastic dominance order [I 11. Indeed, in the Markowitz 
model its efficient set may contain SSD inferior portfolios characterized by a 
small risk but also very low return [15]. Unfortunately, it is a common flaw of all 
Markowitz-type mean-risk models where risk is measured with some dispersion 
measures. In order to overcome this flaw of the Markowitz model, already 
Baumol[2] suggested to consider a performance measure, he called the expected 
gain-confidence limit criterion, p(X) - h ( X )  to be maximized instead of the 
minimization of a (X)  itself. Similarly, Yitzhalu [IS] considered maximization 
of the criterion p(X) - @(X) for the Gini's mean difference and he demonstrated 
its SSD consistency. Recently, similar consistency results have been introduced 
[12, 131 for measures corresponding to the standard semideviation and to the 
mean semideviation (half of the mean absolute deviation). 

Hereafter, for any dispersion type risk measure @(X), the performance func- 
tion S(X) = p(X) - ,(X) will be referred to as the corresponding safety mea- 
sure. Note that risk measures, we consider, are defined as translation invariant 
and risk relevant dispersion parameters. Hence, the corresponding safety mea- 
sures are translation equivariant in the sense that any shift of the outcome scale 
results in an equivalent change of the safety measure value (with opposite sign 
as safety measures are maximized), or in other words, the safety measures dis- 
tinguish (and order) various risk-free portfolios (outcomes) according to their 



values. The safety measures, we consider, are risk relevant but in the sense 
that the value of a safety measure for any risky portfolio is less than the value 
for the risk-free portfolio with the same expected returns. Moreover, when risk 
measure @(X) is a convex function of X, then the corresponding safety measure 
S(X) is concave. 

Relation of the SSD consistency of the safety measures directly involves 
criterion p(X) --@(X). However, the SSD dominance always implies the means 
inequality. Hence, in the case of X >,,, Y we have both p(X) 2 p(Y) and 
p(X) - e(X) 2 p(Y) - e(Y). Thus, by combining inequalities, one may 
easily notice that X F,,, Y implies p(X) - XQ(X) > p(Y) - X@(Y) for 
all 0 5 X 5 1. On the other hand, one may just consider ep(X) = Pe(X) 
as a basic risk measure, like the mean absolute semideviation equal to the 
half of the mean absolute deviation itself. In such a case one may gets another 
(possibly higher) upper bound for the trade-off coefficient guaranteeing the SSD 
consistency. Therefore, following [12], in this paper we say that the (deviation) 
risk measure is SSD a-safety consistent if there exists a positive constant a 
such that for all X and Y: 

For the sake of simplicity, the SSD 1-safety consistency of a risk measure we 
will usually call simply SSD safety consistency. The relation of SSD (safety) 
consistency is called strong if, in addition to ( I ) ,  the following holds 

An important advantage of mean-risk approaches is that having assumed a 
trade-off coefficient X between the risk and the mean, one may directly compare 
real values of p(X) - XQ(X). If the risk measure @(X) is SSD a-safety 
consistent, then except for random variables with identical p(X) and @(X), 
every random variable that is maximal by p(X) - X@(X) with 0 < X < cr is 
efficient under he SSD rules. In the case of strong SSD safety consistency, every 
such maximal random variable is, unconditionally, SSD efficient. Therefore, 
the strong SSD safety consistency is an important property of a risk measure. 

The stochastic dominance partial orders are defined on distributions. The risk 
measures are commonly considered as functions of random variables. One may 
focus on a linear space of random variables C = L ~ ( L ? ,  3, P) with some k > 1 
(assuming k > 2 whenever variance or any related measure is considered). 
Although defined for random variables, typical risk measures depend only on 
the corresponding distributions themselves and we focus on such measures. 
In other words, we assume that e(X) = @(x) whenever random variables X 
and x have the same distribution, i.e. Fl (X, r)  = Fl (x, r)  for all r E R or 
equivalently F-1 (X, p) = ~ - 1  ( x , ~ )  for all p E [0,1]. 
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Table 1. SSD consistency limits for general distributions 

Risk Measure 
Standard semideviation 
Mean absolute semideviation 
Mean absolute deviation 
Conditional P-semideviation 
Mean abs. dev. from median 
Maximum semideviation 
Gini's mean difference 
Tail Gini's mean difference 

1 [I81 (strong [14]) 
1 1141 

Table 2. SSD consistency limits for symmetric distributions 

Risk Measure Consistency 
Standard semideviation B ( X )  2 [I21 (strong) 
Standard deviation 
Mean absolute semideviation J ( x )  2 [I21 
Mean absolute deviation 
Gini's mean difference r ( X )  2 [I41 (strong) 

Within the class of arbitrary uncertain prospects allowing to consider stochas- 
tic dominance (the class of random variables with finite expectations E[IXI] < 
m, or E [ X ~ ]  < cc while for standard deviation), several consistency results 
have been shown, as summarized in Table 1 (where the maximum value of alpha 
is presented). Obviously, any convex combination of measures preserves their 
SSD safety consistency which justifies several combined measures [8]. It turns 
out that when limiting the analysis to outcomes described with the symmetric 
distribution some consistency levels cr increase and one gets additionally SSD 
1-safety consistency of the standard deviation (see Table 2). 

3. SSD consistency conditions 
The risk measures we consider from the perspective of the stochastic domi- 

nance are defined as (real valued) functions of distributions rather than random 
variables themselves. Nevertheless, in many various applications it might be 
more convenient to analyze their properties as functions of random variables. 
Recently, a class of coherent risk measures [l] have been defined by means 
of several axioms. The axioms depicts the most important issues in the risk 
comparison for economic decisions. therefore, they have been quite commonly 
recognized as the standard requirements for risk measures. Let us consider a 
linear space of random variables C = L~ (Cl, 3, P) with some k > 1 (recall, we 
assume k 2 2 whenever variance or any related measure is considered). A real 
valued performance function C : C -3 R is called a coherent risk measure on 



C if for any X ,  Y E C it is monotonous ( X  2 Y implies C ( X )  5 C(Y)) ,  pos- 
itively homogeneous (C(hX)  = h C ( X )  for real number h > 0), subadditive 
( C ( X  + Y) 5 C ( X )  + C(Y)), translation equivariant ( C ( X  + a)  = C ( X )  - a ,  
for real number a), risk relevant ( X  < 0 and X # 0 implies C ( X )  > 0), where 
or inequalities on random variables are understood in terms 'as.'. If @(X)  2 0 
is a convex, positively homogeneous and translation invariant (dispersion type) 
risk measure, then the performance function C ( X )  = @(X) -p (X)  does satisfy 
the axioms of translation equivariance, positive homogeneity, and subadditivity. 
Further, if X > Y, then X = Y + ( X  - Y) and X - Y 2 0. Hence, the 
convexity together with the expectation boundedness 

of the risk measure imply that the performance function C ( X )  satisfies also the 
axioms of monotonicity and relevance [S]. 

In order to derive similar conditions for the SSD consistency we will use the 
SSD separation results. Namely, the following result [ I  1, Th. 1.5.141 allows 
us to split the SSD dominance into two simpler stochastic orders: the FSD 
dominance and the Rotschild-Stiglitz (RS) dominance (or concave stochastic 
order), where the latter is the SSD dominance restricted to the case of equal 
means. 

THEOREM 1 Let X and Y be random variables with X k,,, Y. Then there 
is a random variable Z such that 

x t,,, z tRS Y 

The above theorem allows us to separate two important properties of the SSD 
dominance and the corresponding requirements for the risk measures. 

COROLLARY 2 Let @(X)  2 0 be a (dispersion type) risk measure. The mea- 
sure is SSD l-safety consistent i f  and only i f  it satisfies both the following 
conditions: 

x k,,, y =+ P(X)  - @(X)  2 P(Y) - d Y ) !  (4) 

x kR ,  Y * e ( X )  I e(Y) .  ( 5 )  

Proof. If X kssD Y, then according to separation theorem X k,,, Z kRs  Y 
where E[Z] = E[Y].  Hence, applying (4) and (5) one gets 

On the other hand, both the requirements are obviously necessary. 0 
For strict relation X >,,, Y, the separating Z satisfies X >,,, Z or 

Z F,, Y. Hence, the corresponding strong forms of both (4) and (5) are 
necessary and sufficient for the strong SSD 1-safety consistency. 
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Condition (4) represents the stochastic monotonicity and it may be replaced 
with more standard monotonicity requirement 

where the inequality X 2 Y is to be viewed in the sense o holding almost surely 
(as.). Essentially, X 2 Y implies X k,,, Y, but not opposite. However, the 
relation X >,,, Y is equivalent [ l  1, Th. 1.2.41 to the existence of aprobability 
space and random variables x and Y on it with the distribution functions the 
same as X and Y, respectively, such that x 2 Y .  Hence, for risk measures 
depending only on distributions, we consider, one gets requirements (4) and (6) 
equivalent. Note that for any X > 0 and a E R one gets X + a > a while 
Q(X + a )  = @(X) and, therefore, the monotonicity (6) implies ,o(X) < p(X) .  
This justifies the expectation boundedness (3) as a necessary for monotonicity 
(6) or (4). 

Condition (5) represents the required convexity properties to model diver- 
sification advantages. Note that the second cumulative distribution functions 
F2(X,  r )  are convex with respect to random variables X [13]. Hence, takmg 
two random variables Y/ and Y// both with the same distribution as X one gets 
F2(aYf  + (1 - a )Yf / ,  r )  < F2(X,  r )  for any 0 < a < 1 and any r E R. 
Thus, a Y f  + (1 - a)Yf '  >,, X and convexity of @(X) is necessary to meet 
the requirement (5). 

The concept of separation risk measures properties following Theorem I 
is applicable while considering general (arbitrary) distributions. It may be, 
however, adjusted to some specific classes of distribution. In particular, we will 
show that it remains valid for a class of symmetric distributions. Indeed, a more 
subtle construction 

preserves symmetry of the distribution thus leading us to the following assertion. 
For any symmetric random variables with X t,,, Y, there is a symmetric 
random variable Z such that X k,,, Z >,, Y. One may also notice that 
the 'as. ' characteristic of the FSD relation may be, respectively, enhanced for 
symmetric distributions. 

It follows from the majorization theory [6, 101 that in the case of simple lot- 
teries constructed as random variables corresponding n-dimensional real vec- 
tors (probability l l n  is assigned to each coordinate if they are different, while 
probability k l n  is assigned to the value of k coinciding coordinates) a convex, 
positively homogeneous and translation invariant (dispersion type) risk measure 
is SSD 1-safety consistent if and only if it is additionally expectation bounded 
(3). We will demonstrate this for more general space of lotteries. Hereafter, a 
lottery is a discrete random variable with a finite number of steps. 



L E M M A  3 Lotteries X and Y satisfies X >RS Y ifand only i fFF2(X,p)  2 
F_:!(Y, p) for all p - cumulative probability of a step of Fl (X, a )  or Fl (Y, a) 
and F - 2  (X,  1) = F-2 (Y, 1). 

Proof. From quantile characterization of SSD we have inequality for all 
p E ( 0 , l ) .  On the other hand, we can see that p - cumulative probabil- 
ity of steps are sufficient. Let p l , p2 , .  . . ,p, - cumulative probability of the 
steps of Fl (X,  a )  or Fl (Y, a ) ,  and let c E (pi, pi+l). Then, F - 2  ( X ,  c) = 

F-P(X: ~ i ) + ( c - p i ) F - l ( X , ~ i + l )  = F-2(X, ~ i + l ) - ( ~ i + l - c ) F - l  (X ,  pi+l).  
Hence, F-2  (X ,  c) 2 F - 2  (Y, c) whenever F-2 (X ,  pi) 2 F - 2  (Y, pi) and 
F-2(X,pi+l)  2 F-2(Y, pi+l). Furthermore, F_2(X, 1) = E [ X ]  = E[Y]  = 
F_2(Y, 1) is necessary for RS-dominance. 0 

Let X = Y, t ~ s  Y,-l t ~ s  . . . t ~ s  Yl = Y and for all k: Yk = 

Xk-lYi!l + (1 - Xk-l)YL-l, where Xk-1 E ( 0 , l )  and Yiw1 # Y[-l are 
the same distributed as Yk-1, then it is obvious to say that Y is more risky that 
X for all p - convex risk measures. Rothschild and Stiglitz have formulated 
that RS-dominance between two random variables is equivalent to existing a 
sequence of mean preserving spreads (MPS) that transform one variable to the 
other. Two variables X and Y differ by MPS if there exists some interval that 
the distribution of X one gets from the distribution of Y by removing some of 
the mass from inside the interval and moving it to some place outside this inter- 
val. Gaining by MPS we will show that for lotteries with rational probability 
X and Y if only X >RS Y then Y is always more risky than X for all convex 
risk measures. 

THEOREM 4 Proof. Let X,  Y - lotteries with rational probability of steps. If 
X t RS Y then there exists a sequence of lotteries Yl , Y2, . . . , Yn satisfiing the 
following conditions: 

2 yi+l = (1 - X')Y; + Xiy;, for i = 1 , .  . . , n - 1, where 0 < Xi < 1 and 
Y: # Y; are identically distributed as Yi. 

We will construct a sequence of MPS - Yl, Y2, . . . , Y, using quantile char- 
acterization of RS-dominance. From Rothschild and Stiglitz theorem [7] one 
knows that the sequence (Yk)k=l....,n exists. We will build it, however, as a 
convex combination of two identidally distributed random variables. 

Let cl , c2, . . . , C, - cumulative probability of steps of Fl (X, a )  or F1 (Y, a ) .  
Due to Lemma 3, we may focus on the steps of distributions. 
Letpi = c i  -ci-1,fori = 2 , . . .  , m a n d p l  = e l , @ =  ( p l , . .  . ,p,), 

+ 

xi - ci-quantile of X for i = 1, . . . , m, X = ( x l , .  . . , x,), - 
yi - ci-quantile of Y for i = 1, . . . , m, Y = (yl,  . . . , y,). 
There exists the first index i such that xi # yi (actually xi > yi, due to the 
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dominance) as well as there exists the last index i for which xi # yi (actually 
xi < yi, due to the equality: R 2 ( X ,  1) = E [ X ]  = E[Y]  = FP2(Y, 1)). With 
no loss of generality we can assume that the first index is 1 and the last one is 
m. By definition, we get F-2(Y, ci) = Cg=l pjyj. 
Define: A" := x j  - y: ViZl ,,... n, j= l  ,..., m,  

3 
First step. A! > 0 and A: < 0, where k = min{i : A: < 01, let 

A1 = min{A:, -A;) and p1 = rnin{pl,pk) 
p'l: PI, P2 . . .  Pk, . . . p m  

9 :  yl, Y2 . . .  Yk, . . . Y m  

2 :  XI ,  22 . . .  Xk, . . . X m  

g 2  : pl, pl-pl, PZ . . .  PI, p k - p l  . . .  P m  

p 2 :  yl, 1 Y2 . . .  Yk, Yk . . .  Y m  

g 2 :  21, 51, 22 . . . Xk, Xk . . . X m  

Note ttat g2 ha: at least one coordinate equal 0: pl - p1 = 0 or pk - p1 = 0 
while Y and X have at least one new the same coordinate: x l  = y: + A' 
orxk = y; -A1.  

With a finite number of steps we can transform yi to xl  or y; to xk. Thus, 
m coordinates of Y can be transformed with a finite number of steps to m 
coordinates of X .  

The i-th step has the same idea: we choose first index where A; is positive 
and it can be treated as A: in first step, because for all indexes before A: = 0. 
Then, we choose first index when A; is negative as A: in first step. Ai ,pi  are 
formed in the same way as A', pl .  

? ' is built from ? by moving the same mass - Ai from one coordinate 
to another with the same probability -pi. Let j ,  k be these coordinates, the rest 
of them are the same in the vectors. 

P'" : . .  pz> . . .  p', . . . 
: . . .  ~ 4 ,  . . . YL . . . 
' : . .  . y:, . . .  Y;> . . . 
i+l . . . . . y; +Az, . . . y k  - Az, . . . 

and ? are the same distributed and (1 - Xi)qli+ Xi? i=? where 

X, Y', Y" E (R, F, P); YI, Y" -the same distributed lotteries with rational 
probability of steps. If X = XYf+(l - X)Yf', then for all convex positive 
functions Q (where Q(Y') < oo), one gets Q(X)  = Q(XY' + (1 - X)Y'') 5 
XQ(Y') + (1 - X)Q(Y"). Moreover, if Q depends only on distributions, then 
e(Y1) = e(Yf'). Hence, X h,, Y' implies Q(X)  5 ,o(YJ), and X >,, 
Y' implies Q(X)  < Q(Y') if Q is strictly convex on identically distributed 
random variables. Recall that expectation boundedness together with convexity 
guarantee the corresponding monotonicity with strict monotonicity properties 



for strictly expectation bounded risk measures. This leads to the following 
assertion. 

THEOREM 5 Let us consider a linear space C c L ~ ( R ,  3, P )  of lotteries 
with rational probability of steps. If risk measure @ ( X )  > 0 depending only 
on distributions is convex, positively homogeneous, translation invariant and 
expectation bounded, then the measure is SSD I-safety consistent on C. I f @ ( X )  
is also strictly convex on identically distributed random variables and strictly 
expectation bounded (on risky rv.), then it is strongly SSD 1-safety consistent 
on C. 

Note that Theorem 5 applies to the important class of distributions where 
one may take advantages of the LP computable risk measures [S]. It justifies 
then the sufficient conditions for the coherency as simultaneously sufficient for 
SSD (safety) consistency. The basic consistency results could be also derived 
for continuous distributions from the relation [3] 

However, the strong consistency results cannot be achieved in this way. 

4. Concluding remarks 

One may specify risk dependent performance functions to transform several 
risk measures into SSD consistent and coherent safety measures. We have in- 
troduced convexity and expectation boundedness as necessary and sufficient 
conditions which allow us to justify various risk measures with respect to such 
coherent transformation. While focusing on the space of finite lotteries, where 
one may take advantages of the LP computable risk measures, it turns out that 
these sufficient conditions for the coherency are also sufficient for SSD consis- 
tency. Moreover, when enhanced to strict convexity (on identically distributed 
random variables) and strict expectation boundedness (on risky random vari- 
ables) they are also sufficient for strong SSD consistency. The latter is crucial to 
guarantee the SSD efficiency of the corresponding safety maximization optimal 
solutions. 
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OPTIMAL POLICIES UNDER DIFFERENT 
PRICING STRATEGIES IN A PRODUCTION 
SYSTEM WITH MARKOV-MODULATED 
DEMAND 
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Abstract We study the effects of different pricing strategies available to a continuous re- 
view inventory system with capacitated suppIy, which operates in a fluctuating 
environment. The system has a single server with exponential processing time. 
The inventory holding cost is nondecreasing and convex in the inventory level, 
the production cost is linear with no set-up cost. The potential customer demand 
is generated by a Markov-Modulated (environment-dependent) Poisson process, 
while the actual demand rate depends on the offerred price. For such systems, 
there are three possible pricing strategies: Static pricing, where only one price is 
used at all times, environment-dependent pricing, where the price changes with 
the environment, and dynamic pricing, where price depends on both the current 
environment and the stock level. The objective is to find an optimal replenishment 
policy under each of these strategies. This paper presents some structural prop- 
erties of optimal replenishment policies, and a numerical study which compares 
the performances of these three pricing strategies. 

Keywords: Inventory control, pricing, Markov Decision processes 

1. Introduction 
During the last few decades, it is realized that thejoint optimization of pricing 

and replenishment decisions results in significant improvements on the firm's 
profit (see e.g., [3]). The inspiring results obtained on this topic so far encour- 
aged us to analyse an inventory pricing and replenishment problem. On the 
other hand, the environmental factors affect the density of the demand distri- 
bution unpredictably, and the focus in the recent studies of inventory control 
has been shifting to model the impact of fluctuating demand on the optimal 
replenishment policy. Hence, we consider an inventory system operating in a 
fluctuating demand environment, which controls the prices as well as the re- 
plenishment. As a result, our work stands at the junction of three main-stream 
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Author(s) [insert Last name, First-name initial(s)]. 2006. in IFIP International Federation for Inform- 
ation Processing, Volume 199, System Modeling and Optimization, e d ~ .  Ceragioli F., Dontchev A,; 
Furuta H.. Marti K., Pandolfi L., (Boston: Springer). pp. [insert page numbers]. 



research topics, inventory control, price control and the effects of environmental 
changes on the control policies. 

We study a continuous review, infinite horizon inventory pricing and replen- 
ishment problem with capacitated supply. The system has a single server with 
exponential processing time. There is no set up cost, and the production cost 
is linear. The inventory holding cost, on the other hand, is nondecreasing and 
convex in the inventory level. In order to model a fluctuating environment, we 
assume that the potential customer demand is generated by a Markov-Modulated 
(environment-dependent) Poisson process. Moreover, the actual demand de- 
pends on the price offered at the time of the transaction, such that the actual 
demand rate decreases as the price increases. For a system operating in this en- 
vironment, there are three possible pricing strategies: Static pricing, where only 
one price is used at all times, environment-dependent pricing, where the price is 
allowed to change with the environment, and dynamic pricing, where price de- 
pends on both the current environment and the stock level. In this paper, we use 
a Markov Decision Process framework to model this system as a make-to-stock 
queue operating under each of these strategies. Using this framework, we show 
that optimal replenishment policies are of environment-dependent base-stock 
level policies for these pricing strategies. We also compare the performances 
of these three strategies by an extensive numerical study. 

The objective of inventory management is to reduce the losses caused by 
the mismatches that arise between supply and demand processes. With the 
advances in computers and communication technology, the role of inventory 
management has changed from cost control to value creation. Therefore, the 
issues inventory management studies now include both the traditional decisions 
such as inventory replenishment and the strategic decisions made by the firm 
such as pricing. In fact, there has been an increasing amount of research on pric- 
ing with inventory/production considerations, see the excellent review papers 
[41, [91, and [I]. 

The widely known results in inventory control model the randomness of de- 
mand by using a random component with a well-known density in the definition 
of the demand process. However, the focus in the recent studies of inventory 
control has been shifting to model the impact of fluctuating demand on the 
optimal replenishment policy (see [7] and [2] among others). In particular, 
changes in the demand distribution might be caused by economic factors such 
as interest rates, or they might be caused by the changes in business environ- 
ment conditions such as progress in the product-life-cycle or the consequences 
of rivals' actions on the market. The model we present below considers the 
effect of external factors on the demand distribution. 

This paper is organized as follows: In the next section we introduce the mod- 
els for the pricing strategies described above. Section 3 will present structural 
results for an optimal replenishment policy for each of the pricing strategies. 
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In section 4, we will present our numerical results, which compare the per- 
formances of the three policies and provide insights, and point out possible 
directions of future research. 

2. Model formulation 
In this section we present a make-to-stock production system with three 

different pricing strategies: (1) the static pricing problem where a unique price 
has to be chosen for the whole time horizon regardless of the environment and the 
inventory level, (2) the environment-dependent pricing where the price can be 
changed over time depending on the environment, but not on the inventory level 
(3) the dynamic pricing where the price can be changed over time depending 
on both the inventory level and the environment. The production system should 
also decide on the replenishment of the items. 

Consider a supplier who produces a single part at a single facility. The 
processing time is exponentially distributed with mean 1 / p  and the completed 
items are placed in a finished goods inventory. The unit variable production 
cost is c and the stock level is X ( t )  at time t ,  where X ( t )  E lN = (0, 1, ...). We 
denote by h the induced inventory holding cost per unit time and h is assumed 
to be a convex function of the stock level. 

The environment state evolves according to a continuous-time Markov Chain 
with state space E = (1, . . . , n) and transition rates qeg from state e to state 
j # e. We assume that this Markov chain is recurrent to avoid technicalities. 
For all environment states, the set of allowable prices P is identical. The 
customers arrive according to a Markov Modulated Poisson process (MMPP) 
with rate A, when the state of the exogenous environment is e. We assume 
that the potential demand rates are bounded, i.e., max{A,) < cc; a reasonable 
assumption which will be necessary to uniformize the Markov decision process. 
The customers decide to buy an item according to the posted price p, so that 
the actual demand rate in environment e is X,(p) when a price of p is offerred. 
Obviously, the actual demand rate is bounded by the potential demand rate so 
that Xe(p)  5 A, for all e and for all p. We note that the domain of the prices, 
P, may be either discrete or continuous. When P is continuous, it is assumed 
to be a compact subset of the set of non-negative real numbers IR+. 

For a fixed environment state e, we impose several mild assumptions on the 
demand function. First, we assume that Xe(p)  is decreasing in p and we denote 
by p,(X) its inverse. One can then alternatively view the rate X as the decision 
variable, which is more convenient to work with from an analytical perspective. 
Thus the set of allowable demand rates is C, = A,(?) in environment state e. 
Second, the revenue rate r , (X)  = Ape ( A )  is bounded. Finally we assume that 
p, is a continuous function of X when the set of prices P is continuous. 



At any time, the decision maker has to decide whether to produce or not. 
The decision maker may also choose a price p  E P, or equivalently a demand 
rate X E Le at certain times specified by the pricing strategies described above. 
If we are in search of optimal replenishment policies for the pricing strategies 
described above, then the optimal policy is known to belong to the class of 
stationary Markovian policies, see [8]. Therefore the current state of the system 
is exhaustively described by the state variable ( x ,  e )  with x the stock level and 
e  the environment state and ( x ,  e )  belongs to the state space IN x E. Then, 
for dynamic pricing strategy p(x ,  e )  is the price of the item when the system 
operates in environment e  with x  units of item on inventory, for environment- 
dependent pricing policy p(e)  is the price chosen a priori for environment e  
so that p(e) is charged whenever the system enters environment e  regardless 
of the current inventory level, and p, is the static price to be always offerred 
regardless of the environment and the inventory level. 

2.1 Optimal static pricing strategy 
In static pricing, the decision maker has to choose a unique price in P for the 

whole horizon. The static pricing problem can be viewed in two steps. First, 
we determine the optimal production policy, which depends on both the envi- 
ronment and inventory level, for a given static price, p. Hence, let v t ( x ,  e;  p) 
be the expected total discounted reward when the replenishment control policy 
T is followed with p, = p over an infinite horizon starting from the state ( x ,  e). 
If we denote by a the discount rate, by N ( t )  the number of demands accepted 
up to time t ,  and by W ( t )  the number of items produced up to time t when the 
posted price is always p  and the replenishment policy T is followed, then: 

where X ( t )  is the inventory level at time t ,  as defined previously. We seek to 
find the policy T*  which maximizes v t ( z ,  e ;  p) for a given price p. Let vQ be 
the optimal value function associated to T * ,  so that: 

Now we can formulate this problem as a Markov Decision Process (MDP): 
Without loss of generality, we can rescale the time by taking p + C A, + 
Ce Cjf, qej + a = 1. After a uniformization, vQ satisfies the following 
optimality equations: 
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where the operator To for any function f ( x ,  e)  is defined as 

Hence, the operator To corresponds to the production decision. We de- 
fine a,(x, e)  as the optimal replenishment decision in state ( x ,  e) such that 
a,(x, e)  = 1 if it is optimal to produce the item, and a,(x, e)  = 0 otherwise. 
We also define also the operator T ,  such that v,* = T,v;. Therefore, whenever 
a price p  is given, we can find an optimal replenishment policy by solving an 
MDP. 

The second step is to find the optimal price p: in the set of prices P, where 
there might exist potentially several optimal prices. Since we assume that the 
exogeneous environment state follows a recurrent Markov chain, we choose the 
price p: such that pi  = argmax{v,* ( 0 , l ;  p )  : p )  without loss of generality. 

2.2 Optimal environment-dependent pricing strategy 
The problem of environment-dependent pricing strategy is similar to the 

static pricing as it is also solved in two steps. 
In the first step, the optimal production policy, T * ,  is identified for a given 

set of prices Fed  = (p(l), . .., p ( N ) ) .  Let v ,*~  be the optimal value function 
associated to T* .  Then: 

v,*d(x, e;  F e d )  = m:x { Ez>, " [L+w e - " t ~ ( ~ ( t ) )  Wt)  

where E ( t )  is the state of the exogeneous environment at time t ,  p ( E ( t ) )  is 
the posted price when the current environment is E ( t ) ,  and a,  X ( t ) ,  N  ( t )  and 
W ( t )  are defined as above. Optimal replenishment policy T* can be determined 
by using uniformization as in the static pricing problem. Hence: 

where the operator To is defined as in (1). Now aed(x ,  e)  is the optimal replen- 
ishment decision in state ( x ,  e), so that aed(x ,  e)  = 1 if it is optimal to produce 



the item, and aed(x, e) = 0 otherwise. We also define the operator Ted such 
that v $ ~  = Ted~:d. 

In the second step, an optimal price vector pZd = (p* (1) , . . . , p* (n)) is chosen 
such that pad = argrnax{~$~(O, l;ped) : ped), without loss of generality due 
to the recurrent Markov chain governing the environment process. 

2.3 Optimal dynamic pricing strategy 
The system with dynamic pricing is an extension of Li (1988), who analyzes 

the same system operating in a stationary enviornment, to the one operating 
in a fluctuating environment. This problem is different from the static and 
environment-dependent pricing in the following way: Since both optimal re- 
plenishment and optimal pricing policies depend on the current inventory level 
as well as the environment, both policies are determined as a result of an MDP. 
We let $(x, e) be the maximal expected total discounted reward when an opti- 
mal dynamic control policy T * ,  which controls both the replenishment decisions 
and prices, is followed over an infinite-horizon with initial state (x, e). Then 
we have: 

where E(t), a, X(t), N(t) and W (t) are defined as above. We can still use 
uniformization, so that v: should satisfy the following optimality equations: 

ife ife jfi 

where the operator To is defined as in ( I ) ,  and Te is given by: 

and the function g,,, is defined for any X in C, by: 

Therefore, the operator T, corresponds to the arrival rate decision, or equiva- 
lently the price decision in environment e. Optimal replenishment decision in 
state (x, e) is denoted by ad(x, e), where ad(x, e) = 1 if it is optimal to produce 
the item, and ad(x, e) = 0 otherwise. Finally, we define the operator Td such 
that vz = Tdv$. 
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2.4 Discussion on different pricing strategies 
Before describing our results, we want to discuss the advantages and disad- 

vantages of these three pricing strategies. Obviously, optimal dynamic pricing 
policies always generate more profit than optimal environment-dependent poli- 
cies, which in turn generate more than optimal static policies. Now we turn 
to the "qualitative" effects of these policies: Static pricing represents the tradi- 
tional pricing since the price remains fixed over time, regardless of the changes 
in the environment and in the stock level. This type of policies is easy to im- 
plement. In addition, consumers may prefer the transparency of a known price 
that is not subject to any changes. At the other extreme, we have dynamic 
pricing that leads to frequent price changes, since even a change in the stock 
level may trigger a change in price. Therefore, dynamic pricing may create 
negative consumer reactions. Moreover, its implementation requires sophisti- 
cated information systems that can accurately track sales and inventory data in 
real time, and can be extremely difficult especially if price changes require a 
physical operation such as a label change. Environment-depending pricing, on 
the other hand, allows the price to change only with the environmental state. 
Hence, the associated system changes the prices, but not as frequently as the 
one with the dynamic pricing does. As a result, this policy is in between static 
and dynamic policies regarding to the practical problems and difficulties they 
bring. 

3. Structural results 
The MDP formulations of the replenishment problems given in Section 2 

provide not only a tool to numerically solve the corresponding problem but also 
an effective methodology to establish certain structural properties of optimal 
policies. In particular, we will use these formulations to prove that there exists 
an optimal environment-dependent base-stock policy under each of the pricing 
strategies. We first present the definition of an environment-dependent base- 
stock policy: 

D E F I N I T I O N  1 A replenishmentpolicy which operates in a$uctuating demand 
environment, as described in Section 2, is an environment-dependent base- 
stock policy, if it always produces the item in environment e  whenever the 
current inventory level is below a $xed number S(e) ,  i.e., n: < S(e) ,  and 
it never produces in environment e  whenever x  > S(e) ,  where the numbers 
{ S ( l ) ,  ..., S ( N ) )  are called the base stock levels with S (e )  E m! 

Now we argue that each of the pricing strategies yields to an optimal environ- 
ment-dependent base-stock policy, if the corresponding value function is con- 
cave. Hence assume that vz(x ,  e) is concave with respect to x for each envi- 



ronment e,  i.e.: 

If it is optimal to replenish in a state ( x ,  e ) ,  from equation (1) we have: 

Then, by concavity, we have: 

c 5 v;(x + 1 , e )  - v; (x ,  e )  I v ; ( x ,  e )  - v; (x  - 1, e ) ,  

implying that it has to be optimal to replenish in state ( x  - 1, e )  as well. There- 
fore, whenever an optimal policy replenishes in a state ( x ,  e ) ,  it replenishes in 
all states ( k ,  e )  with k  5 x. We can, similarly, show that if an optimal policy 
does not replenish in a state ( x ,  e ) ,  it continues not to replenish in all states 
( k ,  e )  with k 2 x. These two statements together imply the existence of an 
optimal base-stock level in each environment e,  S;(e):  

S;(e)  = minix : a,  ( x ,  e )  = 01, 

where a,(x, e) is the optimal replenishment decision in state ( x ,  e )  with policy 
n. Now we show that the corresponding value functions are concave for all 
pricing strategies we describe above: 

L E M M A  2 Forajixed environment e, forall n = s ,  ed, d: Ifv:(x, e )  is concave 
with respect to x, then T,vi is also concave with respect to x. 

Proof. .ir = s is a special case of n = ed if we set p(e)  = p for all e, and we 
refer to [5] for the proof of .ir = d. Hence, we show the statement for .ir = ed. 
In this proof we denote v , * ~ ( x ,  e ;  9,) by v , * ~ ( x ,  e ) .  Assume that v , * ~  is concave 
in x  for each environment e. 

Now we consider each term in equation (2) separately. By assumption -h 
is concave. To prove that To preserves concavity, we need to show: 

Now let a' = aed(x  + 1,  e )  and a" = a e d ( z  - 1,  e ) .  By our observation 
above, there exists an optimal environment-dependent base-stock policy, so that 
at < aft .  Since v , * ~ ( x  + a', e )  < Tov$d(x ,  e )  and vZd(x + a f t ,  e )  5 Tov,*,(x, e ) :  

6 < v ; ~ ( x +  1  + a f , e )  -cat  - v z d ( x +  a t , e )  + ca t -  

v , * ~  ( x  + at/ ,  e )  + cult + vzd ( x  - 1 + a", e )  - ca" < 0. 

If at = a", then the statement is true by the concavity of v,**. If a' = 0 and 
at' = 1, then the term in the second inequality is exactly 0. All other terms 
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Table 1. Maximum profit gain for different demand variability. 

Table 2. Profit gain of pricing policies for different service rates with E = 0.8. 

in (2) are concave by concavity of v,*$ Thus, TedvHd is concave in x for an 
environment e, whenever vzd is concave. 

Now the above argument immediately implies the existence of optimal 
environment-dependent base-stock policies: 

THEOREM 3 For all pricing strategies n = s :  e d ,  d: The optimal replenish- 
ment policy is an environment-dependent base stock policy. 

Optimality of environment-dependent base stock policies shows that infor- 
mation about the environment in which a firm operates is crucial. 

4. Numerical results 
In our model formulation, the system is controlled directly by the demand 

rate, defined as a function of the offered price. In this section we explicitly refer 
to the prices. We consider a linear demand rate function, which is frequently 
used in the pricing literature. Let p be the price offered. Then we define the 
linear demand function, and its associated revenue rate by: 

where a is a positive real number. 
For a given problem, let g; be the optimal average profit using policy n, 

where discount rate is set to 0, i.e., cr = 0. We define the relative Profit Gain 
for using policy .i7 instead of policy T' ,  PG,,,/, by 



Table 3. The optimal base stock levels for different e with p = 0.11. 

Table 4. The optimal prices for different e with p = 0.11, where fTz(e) = max{pi(x, e ) ) ,  
and p_i(e) = min{p;(x, e ) ) .  

As we know that g ,  <_ ged < g d ,  we will consider PGd,ed, PGd+ and PGed.S. 
We consider a system which operates in two environments, with low demand 

rate (L) and with high demand rate (H).  The demand rates in these environments 
are AL = 1 - E and AH = 1 + E. The factors that affect optimal policies are the 
ratios X/p and hlp,  so we vary the service rate p and the holding cost h, where 
we set a = 1, c = 0, and the average demand rate as 1. Moreover, here we 
only report h = 0.01 and q r ; ~  = ~ H L  = q  = 0.01, although we experimented 
with different h and q  as well as asymmetric transitions rates. In the whole 
numerical study, we restrict our attention to the recurrent states of the Markov 
chain generated by an optimal policy. 

As E increases, the demand variability increases. We observe that optimal 
gain for each pricing policy decreases with E.  The profit gain of r e d  and ~d with 
respect to T ,  also increases with E (see Table l ) ,  which shows the ability of these 
policies to adjust the highly uncertain environments. For small E ,  on the other 
hand, PGd,, < 6%, suggesting that optimal static policy performs good enough 
with mild uncertainty. From Table 2, we observe that policy n, performs the 
worst with capacitated supply ( p  < 0.4) and volatile demand with respect to .ired 

and nd. Optimal static prices are closer to the optimal environment-dependent 
prices in environment H, rather than those in environment L (see Table 4). 
Hence, the demand fluctuation hurts not only the firm by decreasing its average 
gain, but also the customers due to high prices, when static pricing strategy is 
followed. 

We see that policy ~ , d  performs very closely to policy .ird with r n a ~ { P G ~ , , ~ )  
< 3.5% (see Table 1). In fact, it brings most of the benefit of nd,  compare PGd,, 
with PGed,, in Table 2. Moreover, policy T e d  has the advantage of lower inven- 
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tory levels (see Table 3) and of smaller price differences (see Table 4). Hence, 
we can conclude that it is better to use r e d ,  since it brings most of the benefit 
of ~ d ,  while causing less reaction on the customer side with less variability in 
prices, and requiring a reasonable storage space with less variability in the stock 
levels. 

Optimal pricing and replenishment policies may have further monotonicities 
under certain conditions: If we order the environment states with respect to the 
potential demand rates, i.e., A, 5 for e = 1, .., n - 1, then we expect 
to have monotone base stock levels, i.e., S ; ( e )  < S ; ( e  + 1 )  for all pricing 
strategies n = s ,  e d ,  d .  The optimal environment-dependent prices as well as 
the effective demand rates should also be ordered with the potential demand 
rates. Our future work will focus on these monotonicities. 
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Abstract Here we propose a new adaptation of Van der Vorst's BiCGStab to nonlinear 
systems, a method combining the iterative features of both sparse linear system 
solvers, such as BiCGStab, and of nonlinear systems, which in general are lin- 
earized by forming Jacobians, and whose resulting system usually involves the 
use of a linear solver. We consider the feasibility and efficiency of the proposed 
method in the context of a space-diffusive population model, the growth of which 
depends nonlinearly on  the density itself. 

keywords: BiCGStab, iterative methods, population models, sparse nonlin- 
ear systems. 

1. Introduction 
Many popular methods for the solution of a sparse system of linear equations 

such as BiCGStab are iterative. Methods for the solution of nonlinear systems 
are usually recursive and the recursion usually involves forming Jacobians for 
linearization of the nonlinear terms. The solution of a large sparse nonlinear 
system usually involves the use of a linear solver after the Jacobian has been 
formed. 

The task of solving sparse systems of linear or nonlinear equations comes up 
in many large-scale problems of scientific computing. The iterative approach 
to the solution of large linear systems is preferable to the direct one in some 
situations, especially when we have to solve problems arising from applications 
in which the coefficient matrix is sparse. Among the many existing iterative 
methods, the Lanczos-Type Product Methods (LTPMs) are characterized by 
residual polynomials that are products of a Lanczos polynomial and another 
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polynomial of the same degree. LTPMs enjoy some remarkable properties: in 
fact, they incorporate stabilization, so as to reduce and smooth the residuals as 
much as possible; they are transpose-free and gain one dimension of the Krylov 
space per matrix-vector multiplication. For a good survey of LTPMs, see for 
example [lo]. 

A subset of the LTPMs is given by the BiCGStab family. The biconjugate 
gradient method (BiCG) has the property that the estimates of the solution of (1) 
below have residuals that are orthogonal to dual (or shadow) Krylov subspaces 
which increase in dimension with n and this feature is retained implicitly by 
LTPMs. In 1992, Van der Vorst proposed the use of the BiCGStab method 
so as to get smoother convergence of the estimates of the solution of (I), see 
[13]. In the BiCGStab algorithm, the stabilising polynomials are built up in 
factored form, with a new linear factor being included at each step in a way 
such that the residual undergoes a one-dimensional minimization process. This 
basic stabilisation was soon advanced to BiCGStabl and BiCGStab(1) to help 
to avoid possible breakdowns, see [lo]. 

In 1974, Gragg observed a connection between BiCG and vector-Pad6 ap- 
proximation [5]. Vector-Pad6 methods in general construct vector-valued ra- 
tional functions which approximate functions specified by their vector-valued 
power series. The idea is usually to accelerate the convergence of the given 
vector-valued power series (see [I]). A linear system of equations is often 
denoted by 

Ax = b. (1) 

Many models arising in science and engineering require the solution of large 
sparse systems of non-linear equations. We consider the feasibility and effi- 
ciency of the methods proposed here in the context of models of a population 
whose growth depends non-linearly on the density of the population and we 
allow for diffusion of the population through space. 

2. The method 
A basic iterative method [I I ]  for the solution of the nonlinear system of 

equations 
F(z) = 0, with F : 7Zd + 7Zd. (2) 

may summarily be expressed by 

where S is the successor functional, and II is an approximation to the Jacobian 
of the system 
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We develop acceleration methods for (3 ) ,  not requiring explicit evaluation of 
the sequence {zk ) .  A sequence { x k )  of estimates of the root will instead be 
formed using three-term inhomogeneous recursion relations and an optimal 
successor functional. To assess the accuracy of a successor functional, use its 
actual definition and let its residual be 

Thus R ( z )  is a residual preconditioned by II, while F ( z ) ,  given algebraically 
by (2), denotes the vector residual of the original system. 

The core three-term inhomogeneous recursion relations, designed originally 
for convergence acceleration of linear systems, are taken directly from VPAStab 
and here adapted to a nonlinear system [7]. Define preconditioned residuals of 
the estimates xi by 

with initializations given by xo = zo and XI = zl = S ( x o ) .  
The VPAStab recursion formulas are [7] 

with coefficients ak,  Pk defined by 

where 
T e N : = w  r ~ , N = 0 , 1 , 2  , . . . .  (1 1) 

For the vector w  we can take w  = T O .  

For k = 1 , 2 , .  . ., each parameter Qk is chosen to minimise an estimate of 
T 2 k .  Grouping the terms in equn (7) 

and starting with the definition (6), we find that 



We estimate T2k  using first order Taylor expansion of the right-hand side of 
(14), under the assumption that the residual terms in (7) are smaller in norm 
than the estimates of x. Thus 

The matrix J R ( z )  = d R / d z  is the Jacobian of this preconditioned residual, 
and it is only the product JR(22k)?& that is required in (15). The value of Ok 
is determined by minimising the right-hand side of (15) in norm. A suitable 
choice of the preconditioning operator Il still has to be made. Equation (3) 
allows dynamical updating during iteration. Then equations (5) - (15) complete 
the specification of the nonlinear algorithm. 

3. An application 
We consider the feasibility and efficiency of the method proposed in the con- 

text of models of a population diffusing through space whose growth depends 
nonlinearly on the density itself ([8] and [9]). 

Let p(t ,  x) denote the density at time t of a population living in an envi- 
ronment, the spatial variable being represented by the vector x. The density is 
assumed to reproduce and diffuse along the space direction. For simplicity here 
we first formulate the case of one spatial dimension and then outline the case 
of two spatial dimension x E R2, although our framework is also designed for 
x E R3. 

3.1 The uni-dimensional case 
We have 

where E denotes the diffusion coefficient and the function f expresses the re- 
production mechanism. One of the most frequently used forms is the logistic 
law, which gives a nonlinear model: 

f ( P I  = V ( t ,  2) 

where K is the carrying capacity and 
complete one dimensional model reads 

r is the reproduction rate. Thus the 

where x E [a, b]. The discretization method used is the Crank-Nicholson 
formula, which evaluates the equation at a suitable point P (see [12]). Letting 
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the grid (t,, x i )  z ( n k ,  i h )  where k and h are respectively the time and space 
discretization stepsizes, i  = 1 , 2 ,  . . . , N - 1, and the evaluation point P is taken 

as the time midpoint in the mesh, ( ~ ( t ,  + x i ) .  Letting p,,i z p(tn, x i ) ,  
the equation gets discretized as follows 

so that, introducing as a shorthand q, = h, the system reads finally 

and in matrix form 

and 

The matrices A and B have dimension N x N. Suitable boundary conditions 
are used. 

For simplicity, we can also write 



Introducing an extra index m to count the iterations we then define the iteration 
scheme 

(m+l) 
A ( + )  = %(n)  + % ( , ) I 2  - % ~ : ~ , ) l 2 ,  m > 1. (27) 

Now, we consider the splitting A = L + U and the iteration then becomes 

The solution is obviously obtained by operating on the right hand side by L - I  

in the usual sequential way. 
Another iteration scheme which we consider is given by 

where one could also use an incomplete LU decomposition of the Jacobian 
(incomplete LU preconditioning) 

Then, we obviously obtain the solution as if by using U-,,:L,;, but without 
explicitly forming the inverse. 

3.2 The two-dimensional case 
The two-dimensional case is a simple extension of the former one. We 

consider the solution of the problem in the square [ O ;  11 x [O, l ] .  Letting the 
grid (t,, xi, yj) -- ( n k ,  ih,, jhy) ,  where k  is the time stepsize and h,, hy are 
respectively the step-sizes along the x and y axes, the evaluation point P will 
be the average of the Laplacian, discretized via the five point formula at time 

k k n and n + 1. Letting p,,ij r p(t,, xi ,yj) ,  and then q, r , and qy = F, the 
hz Y 

discretized equation gives the nonlinear system 

Notice that the matrices (24) and (25) are here replaced by band matrices. 
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4. Numerical results 
We conducted experiments to compare the following iteration schemes: 

( L  + U) not accelerated, 

( L  + U) + Nonlinear VPAStab, 

(LU) + Nonlinear VPAStab, 

and to compare how different choices of the biological parameters affect the 
various schemes. After performing an extensive experimentation in dimension 
one, we concentrated our attention on the two-dimensional case,the results of 
which are here presented. 

We also considered different boundary conditions: Dirichlet BCs and Neu- 
mann BCs. The computations were done on a workstation running an AMD 
Athlon XP 1500+ with 576 MB of RAM. The iteration is initialized with 

where po = 275, and the iterations were stopped when I Idk) / I z  < tol, where 
to1 is a given tolerance. As a failure criterion we used either too slow conver- 
gence, or a maximum number of nonlinear iterations per timestep (250). In the 
experiments the numerical solutions were computed with timestep k = 

Figure 1. Sample of a numerical solution with Dirichlet BCs, r = 10, K = 100, E = 1 and 
N = 17. 

Since we are interested in evaluation and comparison of the computational 
cost of the various methods, the following counters are given in tables and 
figures: 



NI, the number of nonlinear iterations; 

FC, the number of function calls to the residual; 

ET, the execution time. 

If we look at the number of nonlinear iterations, we note that acceleration 
reduces this number. Consequently, the execution times are also greatly reduced 
in all cases to which we apply acceleration. 

In Figures 2 and 3, we respectively show how the number of nonlinear it- 
erations and the execution time vary versus to the required accuracy (specified 
tolerance) expressed as loglo(tol). 

Figure 2. Plot of the number of nonlinear iterations against log,,(tol) for the accelerated LU 
scheme. 

In Figure 3 (left), execution times for the various methods are shown, versus 
the number N of discretization points in the mesh. We point out that the LU 
iteration scheme requires a higher execution time than the L + U one, while, 
in general, it needs fewer nonlinear iterations. 

We compare the number of nonlinear iterations for different chosen 
values of the biological parameters, the reproduction rate r and the carrying 

capacity K .  Results are shown in Figure 4, in Table 1 for different reproduction 
rates ( r )  and in Table 2 for different carrying capacities (K). 
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Abstract Two different approaches are proposed to enhance the efficiency of the numerical 
resolution of optimal control problems governed by a linear advection-diffusion 
equation. In the framework of the Galerkin-Finite Element (FE) method, we 
adopt a novel a posteriori error estimate of the discretization error on the cost 
functional; this estimate is used in the course of a numerical adaptive strategy for 
the generation of efficient grids for the resolution of the optimal control problem. 
Moreover, we propose to solve the control problem by adopting a reduced basis 
(RB) technique, hence ensuring rapid, reliable and repeated evaluations of input- 
output relationship. Our numerical tests show that by this technique a substantial 
saving of computational costs can be achieved. 

keywords: optimal control problems; partial differential equations; finite 
element approximation; reduced basis techniques; advection-diffusion equa- 
tions; stabilized Lagrangian; numerical adaptivity. 

1. Introduction 
Many physical processes, which involve diffusion and transport of scalar 

quantities, can be modelled by linear advection-diffusion partial differential 
equations. These phenomena are studied, e.g., in Environmental Sciences, to 
investigate the distribution forecast of pollutants in water or in atmosphere. In 
this context it might be of interest to regulate the source term of the advection- 
diffusion equation so that the solution is as near as possible to a desired one, 
e.g., to operate the emission rates of industrial plants to keep the concentration 
of pollutants near (or below) a desired level. 

This problem can be conveniently accommodated in the optimal control 
framework for PDEs, where we consider the Lagrangian functional formulation 
[3], as complementary to the classical approach of J.L. Lions [6]. 
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To avoid numerical instabilities that arise in a transport dominating regime, 
we propose a stabilization on the Lagrangian functional [5] .  We consider two 
numerical approaches that allow an efficient resolution of the optimal control 
problem, in the context of an iterative optimization procedure. In the first 
case we solve the equations governing the control problem by means of the 
Galerkin-FE method. Grid adaptivity is driven by a posteriori error estimate 
on the cost functional, which we assume as an indicator of the whole error on 
the control problem [3] .  Moreover, we propose a separation of the iteration 
and discretization error [ 5 ] ,  for which we define a posteriori error estimate. As 
soon as the iteration error is brought below a desired threshold by means of the 
iterative optimization method, we operate the adaptive strategy to reduce the 
discretization error [5] .  Then we solve numerically the equations governing the 
control problem by means of the reduced basis (RB) method [8] ,  which leads 
to a large saving of computational costs. In fact the RB method permits a rapid, 
reliable and repeated evaluation of the input-output relationship [ 7 ] ;  in the case 
of the control problem the inputs are the control function for the state equation, 
and the observation for the adjoint one, while the outputs are respectively the 
state variable and the adjoint one. 

At the end we report some numerical tests to validate the methods here 
presented, referring in particular to a pollution control problem in atmosphere. 

2. Mathematical Model of the Control Problem 
In this section we recall the Lagrangian functional approach for optimal 

control problems and the associated iterative optimization method, in a general 
setting [ 3 ] ;  then we specialize it to an advection-diffusion control problem. 

2.1 The general setting 
Let us consider the following control problem: 

f i n d  u E U : J ( w , u )  min imum,  with Aw = f + B u ,  ( I )  

where w E V is the state variable, u the control function, A is an elliptic operator 
defined on V with values in V', B is an operator defined on U and valued in V', 
f is a source term, V and U are two Hilbert spaces. We write the state equation 
Aw = fSBuinweakform:  f i n d w  E V : a(w,cp) = (f,p)+b(zi,y), tJy E 
V. The associated Lagrangian functional reads: 

where a(., .) and b(.: .) are the bilinear forms associated with A and B, respec- 
tively, (., .) is the  in inner product, while p E V is the adjoint variable. Should 
there exist, the solution of the control problem (w* , p* : u*) is the stationary 
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point of C(w,p,  u ) .  By differentiating the Lagrangian functional, we obtain 
the Euler-Lagrange system governing the optimal control problem: 

Gul[4] = o  - f i n d  P E  V  : a(4 ,p)  =J , , (w,u)[4] ,  V ~ E V ,  
L,,[cp]=O - f i n d w ~ V  : a(w,cp)=(f,cp)+b(u,cp),  V ~ E V ,  
C,u [$I = 0  - J j U  (w ,  u)[$]  + b($ ,  P )  = 0, V @ E  U .  

The first equation in (3) is the adjoint equation, the second one is the state 
equation, while, by the Riesz theorem, from the third one we can extract the 
sensitivity of the cost functional 6u with respect to the control function u  
(L, ,  [$] = (bu(p, u ) ,  g)).  The control problem can be solved by means of 
an iterative method [I]. At each step j we solve sequentially the state and 
the adjoint equation and we compute the sensitivity 6u(p', u j ) ;  then we eval- 
uate the latter in an appropriate norm, which we compare with a prescribed 
tolerance. If this stopping criterium is not fulfilled, we adopt an optimiza- 
tion iteration on the control function u,  such as the steepest-descent method, 
,j+l = u j - ~JGu(p7, uj), where rj is a relaxation parameter. 

2.2 The case of an advection-diffusion problem 

Let us consider now the specific case of a linear advection-diffusion state 
equation, referring to a 2D-domain R: 

rD and rN are two disjoint portions of the domain boundary dR such that 
rD U rN = dR, u  E L2(R)  is the control variable, while v and V are given 
functions. We assume homogeneous Dirichlet condition on the inflow boundary 
rD := {X E dR : V ( x )  . n ( x )  < 0) ,  being n ( x )  the unit vector directed 
outward, and homogeneous Neumann condition on the outflow boundary := 
dR \ rD. We consider the observation on a part D C R of the domain, for 
which the control problem reads: 

f i n d  u  : J(w , u )  := - ( g  w  ( u )  - zd12 d D  minimum, (5) : L 
where g E C m ( R )  projects w in the observation space and z d  is the desired 
observation function. Adopting the formalism of the previous section and as- 
suming V = H:D := {v E H1(R)  : vlrD = 0 )  and U = L2(R) ,  the 
Lagrangian functional becomes: 



where: 
a ( w ,  p )  := v v w  09 d f l  + (7) 

By differentiating C with respect to the state variable, we obtain the adjoint 
equation in weak form: 

with: 
a a d ( p ,  4 )  := / v V p .  V 4  d f l  + v . V4 P d o 1  

R 
(10) 

In the distributional sense this yields: 

~ ~ ~ ( p )  := -V . ( v V p  + V p )  = X D ~  ( g  w - ~ d ) ,  in f l ,  

p = O ,  o n r D ,  (12) 
v % + v . n p = ~ ,  o n r r ~ ,  

being X D  the characteristic function of the subdomain D. Finally, by differ- 
entiating C with respect to the control function u, we have the optimal control 
constraint, from which we define the cost functional sensitivity: bu(p)  = p. 

3. Numerical Approximation and Stabilization 
For the numerical resolution of both the state and adjoint equations, we 

adopt the Galerkin-FE method with linear elements on unstructured triangular 
meshes. Both equations are of advection-diffusion type with a transport term 
that can dominate the diffusive one; when it happens an appropriate stabilization 
is mandatory to avoid numerical instabilities and their propagation in the course 
of the optimization iterative procedure ([9]). 

3.1 "Optimize-then-discretize" and 
"discretize-then-optimize" approaches 

From a numerical point of view, the algorithm outlined in Sec.2.1 (or in 
Sec.2.2 for the specific advection-diffusion case) requires, at each iterative 
step, the approximation of the state and adjoint equations. This approximation 
can be based, e.g., on a suitable FE subspace Xh c V and the GLS (Galerkin- 
Least-Squares) method [9], obtaining respectively: 
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where SK is a stabilization parameter, R ( w ;  u )  := L(w)  - u, w )  := 
- G ( w ) ,  with G ( w )  := x ~ g  ( g  w - zd) .  This paradigm is resumed 

in the slogan "optimize-then-discretize" [2, 41. An alternative approach is 
"discretize-then-optimize", for which first we discretize and stabilize the state 
equation, e.g. still by the GLS method (Eq.(13) and (14)), then we define the 
discrete Lagrangian functional: 

from which, by differentiation with respect to wh, we obtain the discrete adjoint 
equation (15), however with the following stabilization term: 

Differentiating Lh with respect to uh and applying the Riesz theorem, being 
uh E Xh, we obtain: Suh = ph + CKEIh SK JK L(ph) dK. 

3.2 The stabilized Lagrangian approach 

We consider a stabilization on the Lagrangian functional itself [5], for which 
our stabilized Lagrangian functional is: 

with: 

This approach can be regarded as a particular case of the "discretize-then- 
optimize" one if we identify zh(wh,  ph) with -Sh(wh,ph,  u h )  By differ- 
entiating C i  we obtain the (stabilized) approximate state and adjoint equa- 
tions (13) and (15), assuming 3(wh,  c p h )  = sh(wh, ph; uh) and zad(ph, $ h )  = 

std (ph, 4 h ;  wh), where: 



having set G ' ( w )  := XDg2w.  Finally, the cost functional sensitivity reads: 

4. A Posteriori Error Estimate 
For the definition of an appropriate error estimate for the optimal control 

problem, we identify the error on the control problem as being the error on 
the cost functional, as proposed in [3]. Moreover, we propose to separate this 
error in two parts: the iteration and the discretization error. For the latter we 
define a suitable estimate according with the duality principles [3], adopted in 
the course of mesh adaptive strategy. 

4.1 Iteration and discretization errors 
At each iterative step j of the optimization procedure we consider the fol- 

lowing error: 
= J ( w * , u * )  - J(w~!&J, (24) 

where i indicates optimal variables, while wjh stands for the discrete variable 
evaluated at the step j .  If we refine the mesh, according with an adaptive proce- 
dure, we certainly reduce the component of the full error &) (Eq.(24)) related 
to the numerical approximation at the step j ,  which we call the discretization 
error ag ) .  On the other hand, the part of ~ ( j )  expressing the difference be- 
tween the cost functional computed on continuous variables at the step j and 
the optimal cost functional, which we call the iteration error i p ! ,  can generally 
increase [5]. From Eq.(24): 

e ( j )  = ( J ( w * ,  u*) - J ( w ) ,  d ) )  + ( J ( & ,  u j )  - ~ ( w ) h ,  ujh)) = ~rp? + 
(25) 

then we will define a posteriori error estimate only for ~g). the only part of 
& )  which can be reduced by mesh refinement. Since V L ( x )  is linear in x ,  the 

( j )  iteration error e1, becomes E$! = 1 ( 6u(pl ,  u j )  , U* - uj  ), which, in the 
case of our advection-diffusion control problem (see Sec.2.2 and [5]), can be 
written as: 
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Since the iteration error can not be correctly evaluated by means of this ex- 
( j )  ( j )  pression, we can assume that s i r /  ii 1 ~ I p ) / 1 ; ~ ( ~ ) ,  or, more simply ii 

lip' 2 2 ( n , ,  which leads to the usual criterium / E Y ~  ~i / 6 u ( $ ) /  (L~-norm). 

4.2 A posteriori error estimate and adaptive strategy 
We define the a posteriori error estimate for the discretization error only, 

based on the following theorem ( [ 5 ] ) .  

THEOREM 1 For a linear control problem with the stabilized Lagrangian C i  
(Eq.(19) and Eq.(20)), the discretization error at the j-th iteration reads: 

where x)h := ( w i ,  &, !)h) is the Galerkin-FE approximation and A h ( x i )  := 

s h ( x i )  + sh(wi ,  plh; u;), being s h ( d ,  plh; u)h) the stabilizarion term (21). 

Applying (27) to our advection-diffusion control problem and highlighting the 
contributions on the elements of the mesh K E Th ([3]), we obtain the following 
estimate: 

where, according with the symbol definitions given in Sec.3: 

dK indicates the boundary of K E Th, while [.] stands for the jump of the 
embraced quantity across d K .  

To use the estimate (28), we need to evaluate wj,  ?>' and uj .  Indeed, we 
replace wj and pl by the respective quadratic reconstructions, (w)h)q and ( & ) q ,  



and td by (ui)q := ui - r(6uh((&)q, (? ! )q )  - 6uh(d1  w)h)). according to the 
steepest-descent iterative method with T J  = T .  The following adaptive strategy 
is then adopted to allow an efficient generation of adapted meshes: 

1 we adopt the optimization iterative method till convergence to the iteration 
error tolerance TolIT, assuming an initial coarse mesh; 

2 we adapt the mesh, balancing the error on the elements K E Ih, according 
with the error estimate l )g)  (28), till convergence to the discretization error 
tolerance Tolo; 

( j )  3 we re-evaluate the variables and E!? on the adapted mesh: if EIT 2 
TolIr, we return to point 1 and we repeat the procedure, while if e$$ is 
inferior to TolIT, we stop. 

5. A Numerical Test: Pollution Control Problem 
We apply the a posteriori error estimates l)g) (28) for the discretization error 

and the strategy presented in Sec.4.2 to a numerical test, which can be regarded 
as a pollution control problem in atmosphere. Our goal consists in regulating 
the emissions of industrial chimneys to keep the pollutant concentration below 
a desired threshold in an observation area (a town). 

To this aim we consider a simple advection-diffusion model [5, 81, which 
can be regarded as a quasi-3D model: the pollutant concentration w at the 
emissive height H is described by the advection-diffusion equation introduced 
in Sec.2.2, while the concentration at soil is obtained by projection by means of 
the function g(x, y )  described in Sec.2.2. The values assumed by the diffusion 
coefficient v(x, y )  and the function g(x, y )  depend on the distance from the 
emission sources and the atmospherical stability class (stable, neutral or un- 
stable). In particular, we consider the case of neutral atmospherical conditions 
and, referring to the domain reported in Fig. 1, we assume V = V,? + V,?, 
with V, = Vcos($) and V, = Vsin($) ,  being V = 2.5 m/s.  Moreover 
we consider that the chimneys maximum rate of emission is u,,, = 800 gls 
at the emission height H = 100 m, for which the pollutant concentration (we 
consider SOz) is higher than the desired level zd = 100 , L L ~ / ~ ~ .  In Sec.2.2 we 
have considered the case of u distributed over all the domain R, while here we 
deal with a particular case which can be accommodated in the general case as- 

N suming u = xi=,  uixi, where xi is the characteristic function of the chimney 
ui . 

In Fig.2a we report the pollutant concentration at the ground corresponding to 
the maximum emission rates; in Fig.2b we plot the concentration at ground at the 
completion of the optimization strategy; we observe that the "optimal" emission 
rates become ul = 0.0837 . u,,,, u:, = 0.0908 . urn,, and us = 1.00 . urn,,. 
In Fig.3 we report a comparison among adapted meshes; in Fig.3a that obtained 
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Figure 1. Domain for the pollution problem. 

Figure 2. Pollutant concentration [pg/m3] at the ground before (a) and after (b) the regulation 
of the sources. 

by our estimator v g )  and in Fig.3b by the following estimators [5] (which lead 
to analogous results): 

1 the energy norm indicator ( . i j ~ ) ( j )  := C K ~ T ~  h~ P%; 

2 the indicator (I)gP")(j) := ZKtTh hK { (~g) '  + (#K)2 + (&)')+. 

For symbols definitions see Eq.(29);  the results are compared with those ob- 
tained with a fine mesh with about 80000 elements. The adaptivity driven by 

the error indicator v k )  leads to concentrate elements in those areas that are more 
relevant for the optimal control problem. This fact is underlined by comparing 
the errors on the cost functional and other interesting quantities for the meshes 
obtained with the different error indicators, but with the same number of ele- 

(j ments. E.g., the indicator qD provides an error on the optimal cost functional 
J of about 20% against the 55% obtained by (v;)(j) and (rlEpU)(j) with meshes 



Figure 3. Adapted meshes (about 14000 elements) obtained by q g '  Eq.(28) (a) and (17zPu)(i) 
(b) (and similarly ( ~ E ) ( J ) ) .  

with about 4000 elements, and of 6% vs. 15% with about 14000 elements. We 
( j  see that the adaptivity driven by the error indicator rlD permits large savings 

of number of mesh elements, allowing more efficient resolution of the optimal 
control problem. 

6. A Reduced Basis Approach to Control Problems 

As a second approach to improve efficiency, we consider the RB method to 
solve the optimal control problem, by applying the approach to the state and 
adjoint equations. For a review on the use of the RB method and for optimal 
control problems, see [7, 8, 101. 

6.1 Reduced basis: abstract formulation 
The RB method allows the evaluation of input-output relationships by means 

of a precise and efficient procedure. The goal consists in calculating a quantity 
(the output) s(p) = l (w (p ) ;  p )  depending on the solution of the following 
parametrized equation: 

f i nd  w ( p ) ~ X  : a ( w ( p ) , v ; p ) = f ( v ; p ) ,  V V E X ,  (30) 

where p  E D and D is a set of parameters, X  is a Hilbert space, the form 
a(. ,  .; p )  is bilinear, continuous and coercive and the forms f (.; p )  and I ( . ;  p)  
are linear and continuous, for all p. Moreover, we assume that the form a(. ,  .; p )  
is affine parameter dependent, that is: 
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where 04 : D + R are parameter-dependent functions, while aQ : X  x X -+ R 
are parameter-independent forms; affine parameter dependence is required also 
for f  (.; p )  and 1(.; p ) .  To build the RB space we need to introduce a finite 
dimensional subspace Xh of X ,  which we identify with a Galerkin-FE space 
associated with a very fine triangulation of the domain R. The Galerkin- 
FE element method consists in solving the following N-dimensional problem 
f i n d  w h ( p )  E Xh : a(wh(p) ,V l  p )  = f ( v ) ,  V v  E Xhr which, if N is 
large, leads to computational expensive evaluations of the output s h ( p )  = 
1 ( w h ( p ) ;  p )  for several values of the input p. We consider a set of samples 
5'; = { p i  E V, i = 1 , .  . . , N )  and we define the N-dimensional RB space 
as WN = span{Ci, i = 1 , .  . . , N}, where Cn = w h ( p n ) ,  with n = 1,. . . , N .  
The RB method consists in evaluating the output S N  ( p )  = 1 ( w N  ( p ) ;  p ) ,  where 
w N  ( p )  is given by the following problem (of dimension N): 

Then we write w , ~  ( p )  as w N  ( p )  = ~ r = ~  W N ~  ( p ) ( j ,  being oN ( p )  = 

{ W N I  ( P ) ,  
. . . , WN,,, ( p ) I T  the solution of the following linear system of order N :  

where  AN,,^(^) = a ( < j ,  c; p)  and F N , ( ~ )  = f (c i ,  p ) ,  with i ,  j = 1 , .  . . , N ;  
the output sN ( p )  is calculated as s ~ ( p )  = LN ( p ) T w ~  ( p ) ,  where L N ~  ( p )  = 
l ( c i ;  p) .  From the affine dependence property, we can split the matrix A N ( p )  
and the vectors F N ( p )  and L N ( p )  into a parameter-dependent part and a 
parameter-independent part. In the case of matrix A N ( p ) ,  this means that 

Q AN ( p )  = o ~ ( ~ ) A & ,  where A;i,, = a Q ( @ ,  ci) is a parameter-indepen- 
dent matrix. Similar expressions hold for EN ( p )  and LN ( p ) .  These decompo- 
sitions allow a very convenient computational procedure composed by off-line 
and on-line stages. In the off-line stage we afford the larger computational 
costs, computing the basis Cn of WN and assembling the matrices A; and the 
vectors F& and L & ,  which require N FE solutions and inner products. In the 
on-line stage, given p, we assemble AN ( p ) ,  EN ( p )  and LN ( p ) ,  we solve the 
system (33) and we compute sN ( p ) .  Let us notice that N is usually very low 
with respect to n/ according to the precision required on s ~ ( p ) ;  this leads to 
large computational costs savings in case of recursive evaluation of s ~ ( p )  for 
different parameters p. 

6.2 The reduced basis method applied to control problems 

The resolution of optimal control problems by an iterative method leads to 
a recursive resolution of the state and adjoint equations. The computational 
cost of the whole procedure can therefore be quite relevant, especially if great 



precision is required. In this context, see Sec.2.1, the input of the state equation 
can be regarded as the control function u, while the output as the state variable w. 
Similarly, the adjoint equation input is the observation on the system, related 
to w, while the output is the adjoint variable p itself, which, by means of 
the iterative method adopted (e.g., the steepest-descent method), becomes the 
input for the state equation. The iterative optimization method can be seen 
as a recursive evaluation of an input-output relationship. Moreover, it can be 
interesting to perform an optimization for different values of some physical 
or geometrical parameters [S]: e.g., referring to the pollution control problem 
introduced in Sec.5, the diffusivity, the velocity of the wind, or the reciprocal 
distance among the chimneys. The main idea consists in parametrizing both the 
state and adjoint equations by the parameters of interest and the source terms 
(related respectively to u and w); then we solve these equations by means of the 
RB method in the course of the optimization iterative procedure. The strategy 
allows large savings of computational costs with respect to the conventional FE 
iterative optimization method. The RB space for the adjoint equation does not 
need to be coherent with that for the state equation. 

6.3 Numerical tests 
We report two numerical tests, which refer to the pollution control problem 

considered in Sec.5. 
In the first case we assume that at the initial step the emissions of the chimneys 
are respectively the 45%, 0% and 55% of the total emission ut,t = 2700 g l s .  
The optimization procedure leads to the following distribution of emissions on 
the three chimneys: 3.49%, 0% and 55.02% of utot. The saving in computa- 
tional costs with respect to the resolution by the FE method is about the 73%, 
having chosen r = 800 and an error tolerance on J of lo-'. 
The second test considers as parameters the emissions of the chimneys and the 
wind velocity field, i.e. p = { u l ,  u2, us, V,, Vy) ,  where V = VX2+ Vyy, with 

= 1. We assume V, = cos($) and Vy = sin($) and we start with 

the following initial emissions 30%, 40% and 30% of utot. The optimization 
procedure provides the following optimal emissions, respectively for the three 
chimneys, the 30%, 38.8% and 7.3% of ut,t. The RB strategy, with r = 800 
and the RB dimension N = 81, allows a 55% time saving with respect to the 
FE method, with a final error on J and u respectively about 3.9 . and 
1.1 . The original grid is made of 1700 nodes. 

7. Conclusions 
We have proposed two strategies to improve the efficiency of the numerical 

resolution of optimal control problems governed by linear advection-diffusion 
equations, in the context of an iterative optimization procedure. In particular, 



Advection-diffusion processes 273 

having identified the error on the control problem as error on the cost functional, 
we have separated it into the iteration and discretization errors. For the latter 
we have proposed an a posteriori error estimate, which is adopted in a strategy 
of grid adaptivity. Then we have considered the RB method, applied to the 
equations governing the control problem itself, in order to save computational 
costs by adopting a reliable method. The efficiency of these approaches is 
proved by numerical tests, that are concerned with a pollution control problem 
in atmosphere. 
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Abstract 
A new quasi-Newton scheme for updating a low rank positive semi-definite 

Hessian approximation is described, primarily for use in sequential quadratic pro- 
gramming methods for nonlinear programming. Where possible the symmetric 
rank one update formula is used, but when this is not possible a new rank two 
update is used, which is not in the Broyden family, although invariance under 
linear transformations of the variables is preserved. The representation provides 
a limited memory capability, and there is an ordering scheme which enables 'old' 
information to be deleted when the memory is full. Hereditary and conjugacy 
properties are preserved to the maximum extent when minimizing a quadratic 
function subject to linear constraints. Practical experience is described on small 
(and some larger) CUTE test problems, and is reasonably encouraging, although 
there is some evidence of slow convergence on large problems with large null 
spaces. 

keywords: nonlinear programming, filter, SQP, quasi-Newton, symmetric rank 
one, limited memory. 

1. Introduction 
This work arises as part of a project to provide effective codes for finding 

a local solution x* of a nonlinear programming (NLP) problem, which for 
convenience we express in the form 

minimize f (x) 
xERn 

subject to c,(x) 2 0 i = 1, 2 , .  . , , m, 

although in practice a more detailed formulation would be appropriate, admit- 
ting also equations, linear constraints and simple bounds. In particular we aim 
to develop a new trust-region filter SQP (sequential quadratic programming) 
code which only uses first derivatives of the problem functions f (x) and ci(x). 

Please use the following format when citing this chapter: 
Author(s) [insert Last name, First-name initial(s)]. 2006. in IFIP International Federation for Inform- 
ation Processing, Volume 199, System Modeling and Optimization, e d ~ .  Ceragioli F., Dontchev A,; 
Furuta H.. Marti K., Pandolfi L., (Boston: Springer). pp. [insert page numbers]. 



Filter methods for NLP were first introduced by Fletcher and Leyffer [6], and 
a production code f i l t e r S Q P  has been shown to be reliable and reasonably 
efficient. This code requires second derivatives of the problem functions to be 
made available by the user. The code has been hooked up to the AMPL mod- 
elling language, which includes a facility for automatically providing second 
derivatives, and is available for use under NEOS. More recently, convergence 
proofs for different types of filter method have been developed, and a code 
f i l t e r 2  has been written to implement the method considered in the paper 
of Fletcher, Leyffer and Toint [7]. This code also requires second derivatives 
to be made available. The practical performance o f f  i l t e r 2  is similar to that 
of f i l t e r S Q P .  An early version of the new quasi-Newton filter SQP code, re- 
ferred to as f i l t e r Q N ,  has already been tried on a range of problems with some 
success. 

In view of the ready availability of second derivatives through the AMPL 
modelling language, one might question whether there is a need for NLP algo- 
rithms that use only first derivatives. To answer this, one should first point to 
the success of the NLP solver SNOPT (Gill, Murray and Saunders, [8]), based 
on an augmented Lagrangian formulation, which only requires first derivatives 
to be available. This is one of the most effective existing codes for NLP. Other 
reasons include the fact that Hessian matrices are often indefinite, which in an 
SQP context might render some QP solvers inapplicable. Even if the QP solver 
can handle indefinite matrices, there is usually no guarantee that a global (or 
even local) solution is found to the QP subproblems. (Although it has to be said 
that there is little evidence that this is a serious difficulty in practice.) Another 
argument is that NLP problems often have small or even empty null spaces, in 
which case only a small part of the Hessian is in a sense useful. 

There are certain types of problem however in which Hessian calculations 
can be seriously time consuming and hence impracticable. Such an example is 
the optimal design of a Yagi-Uda antenna, shown to me by Martijn van Beurden 
(see [I] for details). The antenna is constructed from a number of wires along an 
axis, and there are two design variables (length and position along the axis) for 
each wire. Also there are 31 complex variables on each wire to model the current 
(62 real variables if complex arithmetic is not available). These variables satisfy 
a complex dense nonsingular system of linear equations. When modelled in 
AMPL, both the design and current variables appear explicity in the model, 
and the second derivative calculation is seriously time consuming. The largest 
problem that could be handled by AMPL via NEOS, with various solvers, had 
5 wires, and hence 10 design variables and 310 real current variables. For this 
problem, filterSQP took about 2 hours to solve the problem whereas SNOPT, 
which only requires first derivatives, took about 15 minutes. For filterSQP, the 
memory usage was 610MB. 
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An much more effective procedure is not to use AMPL at all, and to use the 
complex linear equations to eliminate the complex variables, leaving a much 
smaller problem in just the design variables. Factors derived from the complex 
equations can be used efficiently to compute the gradient of the reduced problem, 
whereas computing the Hessian of the reduced problem remains very expensive. 
When posed in this way, various QN-SQP solvers, such as DONLP2, NPSOL 
and an early version of the filterQN code, were able to solve the 5-wire problem 
in around one minute. In fact even the 20-wire problem, with 40 design variables 
and 2480 real current variables could be solved in reasonable time. 

This paper describes a new quasi-Newton scheme for updating a low rank 
positive semi-definite Hessian approximation, primarily for use in SQP methods 
for NLP. The paper is organised as follows. Section 2 reviews existing quasi- 
Newton methodology, and gives two results relating to hereditary conditions 
and quadratic termination for the symmetric rank one update, one of which 
may not be well known. Section 3 considers the implications for NLP, and 
describes the form T J U ~  of the representation. In Section 4, the interpretation 
as a limited memory approximation is discussed, and an it is shown how to 
update the representation so that the most recent information is contained in the 
leftmost columns of U. Section 5 focusses on how the projection part of the 
BFGS update might be implemented in this context, and Section 6 describes a 
new scheme which combines this update with the symmetric rank one update, 
for use when the latter alone is inapplicable. The outcome is a new rank two 
update which is not in the Broyden family, although invariance under linear 
transformations of the variables is preserved. The underlying motivation is 
seen to be the preservation of hereditary properties to the maximum extent. 
Conjugacy properties of the update in the quadratic case are brought out in 
Section 7 and a result somewhat akin to a hereditary property is shown to hold. 
Preliminary practical experience is described in Section 8 on small (and some 
larger) CUTE test problems, and is reasonably encouraging, although there is 
some evidence of slow convergence on large problems with large null spaces. 
Some conclusions are drawn in Section 9. 

2. Quasi-Newton methodology 
In this section we review existing quasi-Newton (QN) methodology in the 

context of uncontrained optimization (m = 0 in (1.1)). A QN method is based 
on updating symmetric matrices B ( ~ )  that approximate the Hessian matrix v2 f 
of the objective function. These matrices are then used on iteration k of a 
Newton-like line search or trust region method. The initial matrix B(') is 
arbitrary and is usually chosen to be positive definite, for example the unit 



matrix. At the completion of iteration k of the QN method, difference vectors 

in the variables, and 

in the gradients are available, and an updated matrix B ( ~ + ' )  is computed, usually 
so as to satisfy the secant condition 

which would be satisfied to first order by the true Hessian v2 f (x(lc)). 
There are many ways to satisfy (2.3), but there are two well known QN 

updating formulae which have featured in many applications. These are the 
Symmetric Rank 1 (SRI)  formula 

suggested independently by various authors in 1968-69, and the BFGS formula 

suggested independently by various authors in 1970. Superscript (k)  has been 
suppressed on all vectors and matrices on the right hand sides of these for- 
mulae, and also elsewhere in the subsequent presentation, so as to avoid over- 
complicating the notation. More details and references may be found in Fletcher 
[5] for example. 

An important property of the BFGS formula is that if B ( ~ )  is positive definite 
and aTy  > 0,  then B ( ~ + ~ )  is positive definite. Since v2 f (x*)  is positive 
semi-definite and usually positive definite, it is desirable that the approximating 
matrices B(IC) also satisfy this property. It then follows that the Newton direction 
- ( B ( I " ) ) - ' v  f ( ~ ( ~ 1 )  is a descent direction, and a line search along this direction 
enables f ( x )  to be reduced. It is also possible to implement the line search in 
such a way that 6Ty > 0 always holds. Because of these properties, the BFGS 
formula has been the method of choice in most cases. On the other hand the 
denominator ( y  - B G ) ~ S  in the SR1 formula may be negative, so that ~ ( " ' 1  
is not positive semi-definite, or even zero, in which case the formula breaks 
down. However the SR1 formula has been used, particularly in the context of 
trust region methods, with some safeguards. Indeed there is some evidence 
(Conn, Gould and Toint [4]) that the matrices B ( ~ )  converge more rapidly to 
v2 f (x*)  when the SR1 update is used. 
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Both formulae usually generate dense matrices B ( ~ ) ) ,  even when the true 
Hessian v2 f is sparse, and so are only suitable for solving small to medium 
size problems. Special purpose methods have been developed for solving large 
systems, for example the limited memory BFGS (L-BFGS) method (Nocedal, 
[9 ] ) ,  the sparse Hessian update scheme of Powell and Toint [ll],  and the use of 
the SR1 update for partially separable functions (Conn, Gould and Toint, 131). 

Another pointer to the effectiveness of a QN update, albeit somewhat indi- 
rect, is whether the property of quadratic termination can be proved. That is to 
say, can the associated QN method find the minimizer of a quadratic function in 
a finite number of steps. This property usually holds for the BFGS method only 
if exact line searches along the Newton direction are carried out. A stronger 
termination property holds for the SR1 method in which the differences d ( k )  
can be defined in an almost arbitrary manner. This may be a pointer to the ef- 
fectiveness of the SR1 update in a trust region context. This result is established 
in the following well known theorem. 

THEOREM 1 Consider n SR1 updates using dlfSerence vectors and y(lC) 
for k = 1, 2, . . . ,n, where y (k )  = W S ( ~ )  and W is symmetric. Zf B(') is 
symmetric, and i f for  k = 1, 2, . . . , n the denominators in (2.4) are non-zero, 
and the vectors d ( k )  are linearly independent, then B ( ~ + ' )  = W .  

Proof Clearly the SR1 update preserves the symmetry of the matrices B('). It 
is shown by induction that 

where 1 5 k 5 n + 1. For k = 1 the condition is vacuous and hence true. Now 
let it be true for some k such that 1 < k < n. The definition of B ( ~ +  l )  gives 

where u(l") = Y ( k )  - ~ ( ~ ) d ( ~ ) .  For j = k the right hand side is ~ ( ~ ) d ( ~ )  + u ( ~ )  
which is equal to y(lC) by definition of ~ ( ~ 1 ) .  For j < k it follows from (2.6) that 
~ ( ~ ) ) 6 ( j )  = y ( j ) ,  and also using the definition of u ( ~ )  and symmetry of B ( ~ )  
that 

Because y ( j )  = ~ d ( j )  for all j = 1, 2, . . . , n it follows for j < k that 
= 0. Thus for both j = k and j < k it has been shown that 

B("l)d(j) = y( j )  and hence (2.6) has been established with k + 1 replacing 
k. Hence by induction, (2.6) is true for all k = 1; 2, . . . , n + 1. 



For k = n + 1, and using y(j)  = w S ( ~ ) ,  (2.6) can be written as 

where A is an n x n matrix with columns S ( j ) ,  j = 1 ,  2,  . . . ,n. But A is 
nonsingular by the linear independence assumption, so it follows that B ( ~ + ' )  = 
w. QED 

A consequence of the therorem is that if the SR1 method is applied to min- 
imize a quadratic function with positive definite Hessian W, then a New- 
ton iteration on iteration n + 1 will locate the minimizer exactly. A key 
feature of the proof is the establishment of so-called hereditary conditions 
(2.6), in which secant conditions (2.3) from previous iterations remain sat- 
isfied by subsequent B(IC) matrices. In other words, when the correct behaviour 
B("l)dk) = y ( k )  = is introduced, it persists in subsequent B ( ~ )  
matrices. 

A less well known result in the quadratic case is that if W is positive definite, 
and B(')  = 0 is chosen, then the denominators in the SR1 update are all positive, 
and the matrices B ( ~ )  are positive semi-definite. 

THEOREM 2 Consider n SRI updates using diference vectors S(IC) and y(lC) 
fork  = 1 ,  2 ,  . . . , n, where y(IC) = w S ( ~ )  and W is symmetric positive definite. 
I ~ B ( ' )  = 0, and the vectors d( lc)  k = 1 ,  2 ,  . . . , n are linearly independent, then 
the SR1 updates are well defined, the matrices B ( ~ )  are positive semi-definite 
of rank k - 1, and B ( ~ + ' )  = W .  

Proof Without loss of generality we can take W = I since the SR1 update is 
independent under linear transformations ( [ 5 ] ,  Theorem 3.3.1). It is shown by 
induction that 

and 

B ( ~ ) v = O  Y v ~ { v ~ v ~ d ( j ) = O ,  j = 1 , 2 ,  . . . ,  k - I } ,  (2.11) 

so that B ( ~ )  is an orthogonal projector of rank k - 1. This is true for k = 1 
because B(')  = 0.  Because y ( k )  = S ( k ) ,  (2.4) may be written 
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Because the are linearly independent, it follows that the denominator in 
(2.12) is positive. As in Theorem 1 B ( ~ + ' ) s ( ~ )  = dlc), and for j < k it follows 
using (2.10) that (I - B ( ~ ) ) s ( ~ )  = 0 and hence ~(" ')6(j)  = d"). Also the 
rank one correction in (2.12) is in span{dl), d2)  i . " l  so (2.1 1) follows 
for B("'). Thus the inductive step has been established. The rest of the 
theorem follows as for Theorem 1. QED 

In a non-quadratic context, this theorem suggests that if B(') = 0 is chosen, 
then there is less likelihood that the SR1 update will break down, or give rise 
to an indefinite matrix. 

3. Quasi-Newton updates in NLP 
This section looks at the new issues that arise when QN updates are used in 

the context of an NLP calculation, particularly when n is large. In this case it 
is impracticable to update a full dense Hessian. However, it is only the reduced 
Hessian that needs to be positive serni-definite at a solution, and local and 
superlinear convergence can be achieved without updating a full Hessian. A low 
rank Hessian approximation is presented which allows rapid local convergence 
of SQP, whilst requiring much less storage to implement. 

When the NLP problem has nonlinear constraints, it is the Hessian W  = 
v 2 L ( x ,  A*) of a Lagrangian function C(x, A*) = f ( x )  - c ( x ) ~ x *  that de- 
termines the local convergence properties of an SQP method, where A* is the 
vector of KT multipliers at the solution (see, for example [5]) .  In this case 7 ( k )  

should be computed from differences in the Lagrangian gradients, and Nocedal 
and Overton [lo] recommend 

as an effective choice (amongst others), where is the most recently 
available estimate of the KT multipliers. 

In general, the Lagrangian Hessian matrix W* = v2L(x* ,  A*) at the solu- 
tion may not be positive semi-definite, in contrast to the unconstrained case. 
Only the d x d reduced Hessian matrix Z ~ W * Z  is positive serni-definite (and 
usually positive definite), where columns of the matrix Z are a basis for the null 
space N* = { z  / A * ~ Z  = O } ,  where A* denotes the matrix of active constraint 
gradients at the solution (see [5] for example). Quite often the dimension of 
N* much smaller than n. A related consequence of this is that the denominator 
aTy  that arises in the BFGS method cannot be assumed to be positive, again 
in contrast to the unconstrained case. 

Sufficient conditions for the Q-superlinear convergence of SQP methods 
under mild assumptions are that 



(see Boggs, Tolle and Wang [2]). That is to say, B ( ~ )  should map the null space 
correctly in the limit, but B ( ~ )  - W* is not necessary. In this paper we aim to 
achieve something akin to (3.2) based on the quadratic termination properties 
of the SR1 update. 

Quadratic termination for an NLP solver relates to how the solver performs 
when applied to solve the equality constrained QP problem 

minimize q(x) = 4 x T w x  + cTx 
x E R n  

subject to A ~ X  = b, 

where A E IRnXm,  m < n, and rank(A) = m. We let Z E IRnXd be a matrix 
whose columns are a basis for the null space N ( A T )  = { z  / ATz = 0 )  of 
dimension d = n - m. The QP problem (3.3) has a unique solution if and only 
if the reduced Hessian Z T W 2  is positive definite. In this case, if 

if x(" is a feasible point, and if iteration k is an SQP iteration 

then x ( ~ + ' )  solves (3.3). If the SR1 update is used, and if d consecutive and 
linearly independent steps 6("'), 6(k-2),  . . . , s ( ~ - ~ )  in H(AT)  can be com- 
pleted, then these vectors can form the columns of Z, and (3.4) follows by the 
hereditary properties of the SRI update. Thus quadratic termination is obtained 
under these conditions. 

These results do not require W to be positive definite. However, if necessary 
a related QP problem with the same solution can be defined by adding a squared 
penalty $ a ( ~ ~ x  - b ) T ( A T ~  - b )  into q(x). If ZTWZ is positive definite and 
a is sufficiently large, then the Hessian W + aAAT of the modified objective 
function is positive definite. 

Quadratic termination for an inequality constraint QP problem is less obvi- 
ous, because it is uncertain what will happen to B ( ~ )  before the correct active 
set is located. However tests with f ilterQN on some inequality QP problems 
from the CUTE test set did exhibit termination. 

In this paper we represent B(IC) by the low rank positive semi-definite ap- 
proximation 

~ ( ' " 1  = ~ ( k ) ) U ( k ) ~ ,  (3.7) 

where u ( ~ )  is a dense n x r matrix. Usually u ( ~ )  has rank r but the current 
implementation does not guarantee that this is so. Clearly B ( ~ )  is positive semi- 
definite and has the same rank as ~ ( ~ 1 .  Of course only U'(IC) is stored, and B(IC) 
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is recovered implicitly from (3.7). We shall use the SR1 formula to update u(IC) 
whenever possible. When this is not possible, we shall arrange matters so as 
to retain as many of the most recent hereditary properties as possible in B(IC)). 
By this means we hope that, once the correct active set is located by the NLP 
solver, we shall then build up hereditary properties in the correct null space, 
and hence obtain rapid convergence. 

In using (3.7), it follows from the remarks in Section 2 that there may be some 
advantage to be gained by initializing B(') = 0. We do this simply by setting 
r = 0. In general, a trust region constraint 116// 5 p will ensure that the SQP 
subproblem is bounded, so that no difficulty arises from the rank deficiency of 
B@).  

In passing, we note that even less storage is needed if an approximating 
matrix M ( ~ )  - Z ~ W Z  is used, and B(IC) = Z ( ~ ) M ( ~ ) ) Z ( ~ ) ~ ,  where Z(lc) 
is a current approximation to Z*,  obtained from the current QP subproblem. 
However, the active set in the QP subproblem can change considerably from 
iteration to iteration, and it is not easy to suggest a robust strategy for updating 
~ ( ~ 1 .  

4. Updating the representation ~ ( ' " 1  = u('")u('")~ 
In this section we consider some issues relating the use of an update formula 

in conjunction with (3.7). The SR1 update is seen to be most suitable, if it is 
applicable. It is shown how to implement the update so as order the columns 
of U in such a way that the most recent information is contained in the leftmost 
columns. This provides a useful limited memory capability. 

The SR1 update (2.4) can only be used to update u(IC) if (7 - ~ 6 ) ~ 6  > 0.  
In this case, one way to update u(IC) would be simply to append the column 
vector 

to u(IC)). Unless u is in the range space of u(", we would obtain a matrix u(~+')  
with rank r(ICfl)  = ,(IC) + 1. Thus the SR1 update provides a way of building 
up information in U and is used whenever possible. For the BFGS update, the 
first two terms on the right hand side of (2.5) perform a projection operation 
which usually reduces the rank of B by one. The final rank one term restores 
the rank, so that usually r(IC+') = r(IC). Thus the BFGS update is unable to 
build up information in U .  

The low rank representation (3.7) gives the method the flavour of a limited 
memory method, and indeed we shall introduce a memory limit 



Ideally r,,, should be greater or equal to the dimension d of the null space at 
the solution. In this case we would hope for local superlinear convergence of 
our SQP method. When r,,, < d only linear convergence can be expected, 
and it is not clear how slow this might be. However some hope might be derived 
from the fact that methods such as conjugate gradients and some new gradient 
methods are able to solve instances of very large problems in relatively few 
iterations. 

When the memory is full, the SR1 update would usually cause T ( ~ + ' )  to be 
greater than r,,,, so that we are faced with the need to delete a column of 
u(~+' )  from the memory. We would like to ensure that when this occurs, it is 
the oldest information that is deleted, in a certain sense. We can exploit the fact 
that the representation (3.7) is not unique, to the extent that 

where Q is any orthogonal matrix. We shall choose Q in such a way that the 
most recent information is contained in the leftmost columns of U, when the 
SR1 update is being used. Then we delete the rightmost column of U  when the 
memory is overfull. We shall refer to this as the priority ordering of U .  

We therefore express 

(suppressing superscript (k)) ,  in which 

y - B S  - y - U V  
U = - 

( ( y  - B 6 ) T 6 ) 1 / 2  , 
CY 

(4.4) 

where v = u T S  and CY = ( d T y  - v T v ) l I 2 .  Using (4.4) we may write 

Next we implicitly transform the spike matrix to an upper triangular matrix, 
R say, by postmultiplying by a product of plane rotation matrices in columns 
( 1 ,  j )  for j = r + 1 ,  r ,  . . . , 2 ,  each rotation being chosen so as to eliminate 
the entry in row j  of column 1. These rotations are explicitly applied to the 
columns of the left hand side matrix in (4.5). 

Denoting the product of plane rotations by Q, the resulting matrix may be 
expressed as 
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It follows by a simple induction argument that 

column 1 of u("') depends only on y(k )  

w column 2 of u(~+')  depends only on y ( k ) ) ,  y("') 

rn column 3 of u(~+')  depends only on y ( k ) ,  y("-'), y("2) 

etc., over the range of previous iterations on which SR1 updates have been used, 
by virtue of R being upper triangular. 

We refer to this calculation as 

u("') = sr l(U,  6,  y ) .  (4.7) 

Its cost is O(nr) arithmetic operations, which is the same order of magnitude 
as the cost of a matrix product with U or UT, and hence is readily affordable. 

It is possible that (4.7) may give rise to a matrix u(~+' )  whose columns are 
rank deficient. An example is given by 

It is clear that y  is in the range of U ,  and a = 1, so that the SR1 update does 
not break down. The matrix u ( ~ + ~ )  has 3 non-trivial columns but has rank 
2. At present, there is no evidence to suggest that this possibility is causing 
any practical disadvantages, although if it were so, it would not be difficult to 
suggest modifications to ensure that u(') always has full rank. Indeed, it does 
seem more appropriate in these circumstances to use an update that keeps the 
same the same number of columns in U, such as is described in Section 6 below. 

5. The BFGS projection update 

Although we have argued that the SR1 update will often be well defined, this 
will not always be so. Thus we have to decide how to update u ( ~ )  when the 
SR1 denominator is non-positive. 

An extreme case is when a T y  < 0. In the quadratic case (3.3), this suggests 
that 6  is not in the null space spanned by columns of 2, so that y  provides no 
useful information for updating B. Now the curvature estimate of the current 
B matrix along 6  is S ~ B G .  Thus, if aTB6 > 0, the curvature estimate is seen 
to be incorrect, and we use the part of the BFGS update 

which projects out the existing information along 6, and has the correct invari- 
ance properties. This update reduces the rank of B by one. If r  = 0 or BS = 0 



we just set B ( ~ + ' )  = B. We implement (5.1) in such a way as to reduce the 
number of columns in U by one, which ensures that u('"+') has full rank if u ( ~ )  
has. We may express 

where v = UT6 and vT' is an orthogonal transformation with a product of 
plane rotation matrices in columns ( j ,  r ) ,  j = 1, 2, . . . , r  - 1, so as eliminate 
successive elements vj of v T .  That is to say, vT' = + / / ~ j / ~ e T  where e? = 
(0 , .  . . , 0 ,  1) .  Then 

Thus to update U we apply the same rotations to the columns of U ,  and then 
delete the last column of the resulting matrix. We may write this as 

It follows that G ~ U ( ~ + ' )  = vTQ = oT,  reflecting the fact that B(~+ ' )G  = 0. 
We refer to the entire projection update as 

As for (4.7), the cost is O ( n r )  arithmetic operations. We observe that (5.5) 
destroys any priority ordering properties, and in the quadratic case, hereditiary 
properties. 

6. A new QN update 
We have seen that the SR1 update can be used when dTy  > v T v ,  and the 

projection update when f i T y  5 0. When 0 < G T y  5 v T v ,  there would appear 
to be useful information in 6 and y ,  but the SRl update can no longer be used. 
In this section we present a new update which maximizes the extent to which 
hereditary properties, built up using the SRI update on previous iterations, are 
preserved. 

To do this we partition 

where U1 has rl 2 0 columns and Uz has r2 > 0 columns. The new QN update 
applies the SR1 update to Ul and the projection update to U2, and u("') is 
obtained by concatenating the resulting matrices, that is 
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By choosing rl sufficiently small, it is always possible to ensure that the SR1 
T denominator a = ( 6  y - v T v ~ ) ~ / ~  in (6.2) exists and is positive. We observe 

that (6.2) usually leaves the rank of U unchanged. 
In our current implementation we have chosen rl to be the largest integer for 

which 6 T y  - vTvl > 0. This choice maximizes the extent to which priority 
ordering and, in the quadratic case, hereditary conditions in Ul are preserved in 
u("'). In fact it may well be better to require aTy  - vTvl 2 r where r > 0 
is some tolerance, for example r = edTy with E = say. 

The new update may also be expressed in the form 

If rl = 0 we get the BFGS update (2.5), and if rl  = r then the SRl update 
(2.4). Intermediate values give a new rank two correction formula, but not one 
that is in the Broyden class. We observe the following properties 

Satisfies the secant condition (2.3). 

8 Preserves positive semi-definite B ( I " )  matrices. 

Is invariant under a linear transformation of variables (see [ 5 ] ,  Sec- 
tion 3.3). 

w Any priority ordering or hereditary conditions in Ul are preserved. 

To summarize, if d T y  5 0, then the BFGS projection update is used and the 
rank of U decreases by one (usually). If 0 < aTy  5 v T v ,  then the new update 
is used, choosing 1-1 as described, and the rank of U is unchanged. The choice 
rl = 0 gives rise to a BFGS update. If a T y  > vTv then an SRI update is used 
(the rank of U usually increasing by one), except in the case that r = r,,, and 
the memory is full. In this case we apply the SR1 update and then delete column 
r,,, + 1 of the resulting matrix. We note that this procedure still preserves the 
secant condition (2.3). This follows from (4.6) and (4.4) by virtue of 

where q2 = a T y ,  by virtue of the way in which Q is chosen. Since the last 
element on the right hand side is zero, the secant condition 6 T ~ ( k f  ' ) u ( ~ + ' ) ~  = 
yT is unaffected by deleting the last column of ~ ( " ' 1 .  We also observe that 
any priority ordering in U is preserved, and any hereditary conditions up to a 
maximum of r - 1. 

7. Conjugacy conditions 
The use of the BFGS projection operation can destroy hereditary properties 

that have been built up in the U2 matrix, in the quadratic case. In this section we 



show that this is not as unfavourable as it might seem, and that something akin 
to a hereditary property holds, even when the BFGS projection operation is used 
to update U2. Also some conjugacy properties of the new update are shown. 
The results of this section apply when B(') = 0 and we are investigating the 
quadratic case in which the relationship y ( k )  = holds for all k, where W 
is a fixed matrix. We shall also assume that W is nonsingular, which is a minor 
requirement that can always be achieved if necessary with an arbitrarily small 
perturbation using a quadratic penalty (see the paragraph following (3.6)). 

When ~ ( l )  = 0, it follows easily for both (5.5) and (6.2) by induction that 
the columns of u ( ~ )  are in ~ p a n ( ~ ( l ) ,  y(2) ,  . . . , ~ ( ~ - l ) ) .  It follows that U has 
an image 

A = w-'u (7.1) 

whose columns are correspondingly in span(6(l),  1 " ' )  In Theo- 
rem 3 below it is proved that normalised conjugacy coditions 

are satisfied by U (that is, u(") for all k ,  a consequence of which is that 
u T A  = I. Likewise, conjugacy conditions 

are satisfied by A .  A consequence is that 

Hence B maps the subspace range(A) in the 'correct' way, that is B A  = 
wa = u .  

The implication of this in the quadratic case is that although the use of some 
projection operations may destroy hereditary conditions, it does not introduce 
any 'wron ' information. That is to to say, the image A of U has columns 
in span(aff) ,  d2), . . . , and the current matrix B = U U ~  maps A 
correctly into U (which is WA) .  Thus, although hereditary conditions may not 
be satisfied, the exists a set of directions (columns of A)  which satisfy a similar 
condition B A  = U to hereditary conditions. 

We now prove the theorem on which (7.2) depends. 

THEOREM 3 Let B(') = 0, and let there exist a nonsingularsyrnrnetric matrix 
W such that the dgerence vectors are related by y(k )  = wdk) for all k. Then 
conjugacy conditions (7.2) are preserved by the updating scheme described in 
Section 6. 
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Proof We prove the result by induction. The result is trivially true when k = 1. 
Now we assume that (7.2) is true for some value of k 2 1 and consider the 
calculation of ~ ( " ' 1 .  1f S T y  > 0, then u("') is defined by (6.2), which may 
be expressed as 

using the notation of (4.6) and (5.4) with subscripts 1 and 2 to indicate matrices 
derived from the SR1 and projection updates respectively. We note that Q1 has 
rl + 1 rows and columns, and Q2 has 1-2 rows and 7-2 - 1 columns. It follows 
that 

where uTw-'u = I has been substituted from the inductive hypothesis. It 
now follows from (4.4) and W-'y  = 6 that 

using U T W - ~ U ~  = I and U T W - ~ U ~  = 0 from the inductive hypothesis. 
Also from (4.4) 

from S = W - l y  and the definition of a. But 

from uTw-'u~ = I. Hence uTw-lu = 1. Finally we substitute this 
and (7.7) into (7.6). Then using QTQ' = I, & T Q 2  = I and & T u T ~  = 0 
(from (5.4)), it follows that u ( ~ +  ' )TW-l~(k+' )  = I and establishes that the 
inductive hypothesis holds for k + 1 in this case. 

In the case that S T y  5 0, only the 2,2 partition of the above argument is 
used and the result follows similarly. In the case that the memory is filled, and 
a column of u("') is deleted, it is clear that u("+')~w-'u('"+') = I will 
continue to hold, but for a unit matrix with one fewer row and column. Thus 
the result is established in all cases used in the update scheme. QED 



8. Practical experience 

In this section, some preliminary practical experience with the new update 
scheme is described. An experimental code f i l t e rQN is currently under de- 
velopment, and indeed has been so for some time. It is a trust region filter SQP 
code, based on the method considered in [7], but using the quasi-Newton update 
scheme described in this paper, rather than the exact second derivatives as used 
in the f i l t e r 2  code, referred to in Section I .  The delay in finalizing the code 
is mainly due to uncertainty as to how best to implement feasibility restoration 
when second derivatives are not available. 

The results in this section are sampled from CUTE test problems in which the 
dimension d of the null space at the solution is a significant proportion of n. For 
such problems, feasibility restoration often plays a minor role in determining 
the outcome of the calculation. Thus, although the results cannot yet be taken 
as definitive, they do give some indication as to what level of performance can 
be expected from a QN code. The problems are solved to an accuracy of better 
than in the KT conditions. The memory limit is r,,, = min(n, 100). 

Table 1. Performance o f f  i l t e r Q N  on small CUTE problems 

HS92 6 1 5 33 6' 
HS99 7 2 5  11 6 
HSl OO 7 4 5 14 14 
HSIOOLNP 7 2 5 15 18 
HSIOOMOD 7 4 6 18 13 
HSlO1 7 5 5 230 21 
HS102 7 5 4 209 18 
HS 103 7 5 3 28 25 
H S l l l  10 3 6 45 25 
HSlllLNP 10 3 6 45 25 
HS113 10 8 4 13 6 
HS117 10 5 4 19 21 
CANTILVR 5 1 4 25 17 
DIPIGRI 7 4 5 14 14 
ERRINBAR 18 9 3 70 25 
MISTAKE 9 13 5 17 14 
POLAK3 12 10 9 58 37 
ROBOT 14 2 5 19 11 
TENBARSI 18 9 5 59 28 
TENBARS2 18 8 4 36 28 
TENBARS3 18 8 4 76 28 
TENBARS4 18 9 5 82 29 

* f i l t e r 2  finds a locally infeasible point 
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Table 1 gives results on Hock-Schittkowsh test problems in the left hand 
column, and other small CUTE test problems in the right hand column. Head- 
ings give the number of variables n, the number of constraints m (excluding 
simple bounds), the dimension d of the null space at the solution, the number 
of gradient calls #g required by f i l t e r Q N ,  and the number of gradient calls 
f 2 required by f i l t e r 2 .  One gradient call includes the evaluation of both the 
gradient of the objective function and the Jacobian of the vector of constraint 
functions. In the case o f f  i l t e r 2 ,  it also includes the evaluation of all second 
derivatives. Both codes require about one QP subproblem to be solved for each 
gradient evaluation, most often in warm start mode. 

Generally the problems are solved reliably and accurately by f i l t e r Q N ,  
and we see rapid local convergence. HS90 and HS92 are successfully solved 
by f i l t e r Q N ,  whereas f i l t e r 2  can only find a locally infeasible point. For 
HS101 and HS102, f i l t e r Q N  spends about 200 and 180 iterations respectively 
in feasibility restoration, which accounts for the poor performance. Future work 
on the feasibility restoration algorithm should resolve this difficulty. Apart from 
that, we observe that f i l t e r Q N  mostly takes more iterations than f i l t e r 2 .  To 
some extent this is expected due to the need for f i l t e r Q N  to spend something 
like d extra iterations in building up a matrix B = U U ~  with the property that 
BZ - WZ. 

Next we show some results in Table 2, obtained on some larger CUTE test 
problems, again chosen to have significant null space dimensions. In fact the 
exact dimension of the null space is not so easy to determine, because the 
accuracy required from the QP subproblem can often be obtained without having 
to build up the full reduced Hessian. In the table an approximate value of d 
is given based on the size of the QP reduced Hessian on termination of the 
f i l t e r 2  run. 

Some of the problems are solved quite efficiently by f i l t e rQN.  The largest 
problem DTOClL is the only linearly constrained problem in the set, so fea- 
sibility restoration is not an issue in this case. Thus it is very satisfactory that 
this problem is solved accurately and quickly by f i l t e r Q N ,  even though the 
dimension d of the null space is very large. Less satisfactory is the performance 
on the ORTHREG problems, and also DIXCHLNV, ORTHRGDS and ZAMB2, 
which mostly have large null spaces with d >> r,,,. In these problems, slow 
convergence is observed in the asymptotic phase, and the build up of informa- 
tion in the U matrix is very slow. The restriction on r may also be having an 
effect. On other problems, the behaviour o f f  i l t e r Q N  is reasonably satisfac- 
tory, bearing in mind the need for for extra iterations to build up an effective 
Hessian approximation. 
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Table 2. Performance of f i l terQN on some larger CUTE problems 

n m - ~ d  #g f 2  
AIRPORT 84 42 42 74 12 
LAKES 
READING6 
ZAMB2-8 
ZAMB2-9 
ZAMB2- 10 
ZAMB2-11 
DIXCHLNV 
DTOC 1 L 
DTOC5 
EIGENB2 
OPTCDEG2 
OPTCTRL6 
ORTHRDM2 
ORTHRDS2 
ORTHREGC 
ORTHREGD 
ORTHREGE 
ORTHREGF 
ORTHRGDS 
SVANBERG 
TRAINH 
ZAMB2 

9. Conclusions 
We itemize the main features of this paper as follows. A new QN update 

scheme for low rank Hessian approximation in SQP has been presented. Where 
possible it uses the SR1 update formula, but when this is not possible a new 
rank two update is used, which is not in the Broyden family, although invariance 
under linear transformations of the variables is preserved. The Hessian approx- 
imation is a positive semi-definite matrix, which ensures that global solutions 
of QP subproblems are calculated. It also enables interior point methods to be 
used to solve the QP subproblems, if required. The representation provides a 
limited memory capability, and there is a priority ordering scheme which en- 
ables 'old' information to be deleted when the memory is full. Hereditary and 
conjugacy properties are preserved to the maximum extent when minimizing a 
quadratic function subject to linear constraints. Practical experience is reason- 
ably encouraging on small (and some larger) problems. There is some evidence 
of slow convergence on some larger problems with large null spaces. It may 
be that this is to some extent caused by the use of an I ,  trust region. Future 
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work will continue to develop the f ilterQN code, especially the feasibility 
restoration part, and will also investigate the use of an l 2  trust region. 
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Abstract We use a mathematical model of an open queueing network in heavy traffic. The 
probability limit theorem for the virtual waiting time of a customer in heavy 
traffic in open queueing networks has been presented. Finally, we present an 
application of the theorem - a reliability model from computer network practice. 

keywords: mathematical models of technical systems, reliability theory, 
queueing theory, open queueing network, heavy traffic, the probability limit 
theorem, virtual waiting time of a customer. 

1. Introduction 
One can apply the theory of queueing networks to obtain probability 

characteristics of technical systems (for example, the reliability function of 
computer networks). 

At first we try to present a survey of papers designated to applying the results 
of the queueing theory in reliability. In [2], it is investigated the reliability of a 
distributed program in a distributed computing system and it has been showen 
a probability that a program which runs on multiple processing elements that 
have to communicate with other processing elements for remote data files will 
be executed successfully. In [8], a single machine, subject to breakdown, 
that produces items to inventory, is considered. The main tool employed is 
a fluid queue model with repair. To analyze the performance of multimedia 
service systems, which have unreliable resources, and to estimate the capacity 
requirement of the systems, a capacity planning model using an open queueing 
network has been developed in [6]. Paper [I] discusses a novel model for a 
reliable system composed of N unreliable systems, which can hinder or enhance 
one another's reliability. Paper [lo] analyzes the behaviour of a heterogeneous 
finite-source system with a single server. As applications of this model, some 
problems in the field of telecommunications and reliability theory are treated. 
In [7] the management policy of an M/G/l queue with a single removable 
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Author(s) [insert Last name, First-name initial(s)]; 2006, in IFIP International Federation for Inform- 
ation Processing. Volume 199, System Modeling and Optimization. e d ~ .  Ceragioli F., Dontchev A,. 
Furuta H.; Marti K., Pandolfi L., (Boston: Springer), pp. [insert page numbers]. 



and non-reliable server is investigated. They use the analytic results of this 
queueing model and apply an efficient Matlab program to calculate the optimal 
threshold of management policy and some system characteristics. In [3, 41, 
using the law of the iterated logarithm for the queue length of customers, the 
reliability function of computer network is estimated and a theorem similar to 
Theorem 2.1 is proved. 

In this paper, we present the probability limit theorem for the virtual waiting 
time of a customer in heavy traffic in open queueing networks. 

First we consider open queueing networks with the "first come, first served" 
service discipline at each station and general distributions of interarrival and ser- 
vice time. The basic components of the queueing network are arrival processes, 
service processes, and routing processes. The service discipline is "first come, 
first served" (FCFS). We consider open queueing networks with the FCFS ser- 
vice discipline at each station and general distributions of interarrival and service 
times. The queueing network studied by us has k single server stations, each 
of which has an associated infinite capacity waiting room. Every station has an 
arrival stream from outside the network, and the arrival streams are assumed to 
be mutually independent renewal processes. Customers are served in the order 
of arrival and after service they are randomly routed to either another station in 
the network, or out of the network entirely. Service times and routing decisions 
form mutually independent sequences of independent identically distributed 
random variables. 

The basic components of the queueing network are arrival processes, ser- 
vice processes, and routing processes. In particular, there are mutually 
independent sequences of independent identically distributed random vari- 
ables {r;),  n 2 I), {s:), n 2 1) and {a!), n 2 1) for j = 1 2  . . , k ;  

defined on a probability space. The random variables z k )  and 5':) are 
strictly positive, and a?)  have support in { 0 , 1 , 2 ,  . . , k}. We define p j  = 

(M [s!?)])-' > 0, gj = D (SF)) > 0 and A, = (M [ik)])-' > 0, 

oj = D (z;)')) > 0, j = 1,2, ... , k ;  with all of these terms assumed finite. De- 

note pij = P a t )  = j) > 0, j = 1.2. .  . . , k. In the context of the queueing 
' '( 

network, the random variables z!) function as interarrival times (from outside 
the network) at the station j, while s,!;') is the nth service time at the station j ,  
and a?) is a routing indicator for the nth customer served at the station j. If 
a!' = j (which occurs with probability p,), then the nth customer served at 

the station i is routed to the station j .  When a t )  = 0, the associated customer 
leaves the network. The matrix P is called a routing matrix. 
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To construct renewal processes generated by the interarrival and service 
times, we assume the following for 1 > 1, j = 1 ,2 ,  . . . , k 

Observe that this system is quite general, encompassing the tandem system, 
acyclic networks of G I / G / l  queues, and networks of GI /G /1  queues with 
feedback. 

Let us define 4 ( t )  as a virtual waiting time of a customer at the jth station 
of the queueing network in time t ,  

where j = 1 , 2 , .  . . , k .  
We suppose that the following condition is fulfilled: 

Note that this condition quarantees that, with probability one there exists a 
virtual waiting time of a customer and this virtual waiting time of a customer 
is constantly growing. 

One of the results of the paper is the following theorem on the probability 
limit theorem for the virtual waiting time of a customer in an open queueing 
network. 

THEOREM 1 Ifconditions ( I )  are fuljilled, then 

Proof This theorem is proved on conditions X j  > pj, j = 1 , 2 ,  . . . , k (see, 
for example, [9]). Applying the methods of [4], it can be proved that this 
theorem is true under more general (1) conditions. 

The proof of the theorem is complete. 



2. Reliability functions of the computer network 
Now we present a technical example from the computer network practice. 

Assume that queues arrive at a computer v j  at the rate X j  per hour during 
business hours, j  = 1 , 2 ,  . . . , k .  These queues are served at the rate pj per hour 
in the computer v j ,  j = 1 , 2 ,  . . . , k.  After service in the computer v j ,  with 
probability pj (usually pj 2 0.9) ,  they leave the network and with probability 
pji, i # j ,  1 5 i 5 k  (usually 0 < pji 5 0.1) arrive at the computer 
vi ,  i = 1 , 2 ,  . . . , k. Also, we assume the computer v j  fails when the virtual 
waiting time of queues is more than k j ,  j  = 1 , 2 , .  . . , k .  

In this section, we will prove the following theorem on the reliability function 
of the computer network (probability of stopping the computer network). 

k .  
THEOREM 2  i j t  2 max 4 and conditions ( I )  are fuljilled, the computer 

l G < k  0, 
J 

network becomes unreliable (all computers fail). 

Proofi At first, using Theorem 1 we get for 0 < E < 1  that 

Let us investigate a computer network which consists of the elements (com- 
puters) v j  that are indicators of stations Xj, j = 1 , 2 ,  . . . , k .  

Denote 
if the element v j  is reliable, 

0 ,  if the element v j  is unreliable, 

= 1 , 2  , . . . ,  k .  
Notethat{Xj = 1 )  = {V,(t) < k j ) ,  j = 1 , 2  , . . . ,  k .  
Denote the structural function of the system of elements connected by scheme 

from k (see, for example, [ 5 ] )  as follows: 

Let us estimate the reliability function of the computer network using the 
formula of full conditional probability (see [4]) 
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Applying Theorem 1 (when t  = 1) we obtain that 

0  5 J~E P( ' / , ( t )  < k j )  = n+m lim P ( y ( n )  < k j )  = 

& ( n ) - p j . n  k j - & . n  
lim P < exp(-y2/2)dy  = 0. 

n-00 6j . fi 8j . fi 
(9.4) 

Thus (see (4)), 

lim P ( V , ( t )  < k j )  = 0 ,  j = 1 , 2  , . . . ,  k.  
t+oo 

(9.5) 

Consequently, lim h ( X 1 ,  X 2 ,  . . . , X k ,  t )  = 0  (see (3) and (5)). 
t i o o  

The proof of the theorem is complete. 
Finally, we give an exact expression for h(X1 ,  X2 , .  . . , XI; ,  t ) ,  t  > 0. We 

will prove the following theorem on this probability. 

THEOREM 3 h ( X 1 ,  X2, . . . , Xk;  t )  i s  equal to exp(- c;=~ P ( & ( t )  < 
k j ) ) .  

ProoJ: First denote X j ,  j = 1 2,  . . . , k  as intensities of structural elements, 
that form a complex stochastic system. Then probability of stopping this system 

is equal to e - C:=l4 (see, for example, [l I]). 
But 

Applying (6), we obtain that h ( X 1 ,  X 2 ,  . . . , X k ,  t )  is equal to 

The proof is complete. 
As one can see, using Theorems 2 and 3, it is possible to estimate the relia- 

bility of a complex computer network. 
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